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Abstract

We analyze the incentives of online search intermediaries to reduce the consumers’
search costs when the intermediary imperfectly observes consumers’ preferences. In our
model, the intermediary manipulates the demand in two downstream product markets
by choosing which product is the search default, and the cost of finding the alterna-
tive. Subsequently the available supply in each market is allocated in a perfect price
equilibrium. The decentralized search decisions mimic those of a social planner with
the same search technology, and thus a welfare-maximizing intermediary would set zero
search costs. By contrast, an intermediary who maximizes seller revenue will optimally
maintain positive search costs so that the default can be used to steer consumers to the
market where they generate the most revenue.
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1 Introduction
Many of today’s leading companies can be thought of as multi-sided platforms.1 The main
service such platforms provide in order to attract their customers is facilitating value creating
transactions between buyers and sellers of goods or services. In markets with almost homo-
geneous goods (e.g. Uber), the platform centralizes the matching of buyers to sellers; but in
many differentiated product markets (e.g. Airbnb, Amazon, Upwork, Kayak), the platform
presents options and lets the buyer pick. The platform controls two aspects of the buyer
experience: the search default and the search costs. For example, a platform can feature
one brand by putting it on top of the search results list; design the web page that makes it
hard for users to find alternatives without additional clicks; provide or avoid the interface for
head-to-head comparision of competing products; and subtler things like invest in backend
technologies for faster navigation of the web site; not restrain the individual sellers’ obfus-
cation policies2. Even though search intermediation is a large part of the modern economy,
the economic implications of the intermediaries’ decisions have not been fully explored in
the literature.

In this paper we analyze how a platform’s choice of default product and search costs
affects consumer surplus, seller revenue, or overall welfare and study the optimal platform’s
policies to maximize these objectives. We find that minimizing search frictions is best when
maximizing welfare or consumer surplus, though with upward sloping supply this does not
achieve the first best consumer surplus. By contrast, positive search costs are required to
maximize seller revenue, since in the presence of search costs, defaults can be used to steer
consumers to the high-priced or price-inelastic market. Furthermore, randomized defaults
may be necessary. Since most search intermediaries are paid by sellers, either on a per
transaction or revenue-sharing basis, one might reasonably expect platforms to create search
frictions and strategically manipulate defaults in order to raise revenues.

The following example will illustrate the crucial idea that absent transfers, the second-
best solution for an intermediary is to have positive search costs. Imagine a search aggregator
for air travel, such as Kayak or Momondo, whose business model is to facilitate search for
cheap air tickets and take fees from the airlines and travel agencies. For simplicity, there
are two downstream companies, United and American, that have similar flight routes, so
that consumers preferences between the two are idiosyncratic (brand loyalty, airline benefit
card, etc.). How should the intermediary structure the search process in terms of a) search
frictions and b) featured product, to increase its revenue? On the one hand, low search
frictions allow consumers find the airline from which they derive the most utility, in terms
of better match and better price. Assuming prices are set close to marginal costs, frictional
search also generates the most value. On the other hand, low search costs do not allow
the platform to capture much of the generated value. By maintaining search frictions, the
platform sacrifices a part of overall welfare but instead obtains an option of steering searchers
to the airline that generates more revenue for the platform. If the loss in total welfare is
smaller than the gain in extracted surplus, the platform has no incentives to optimize search.

We study the platform’s incentives to create search frictions and manipulate default prod-
1Hagiu and Altman (2017).
2Ellison and Wolitzky (2012).
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ucts using a simple price-theoretic model. There are two perfectly competitive downstream
markets, A and B; each produces a single good. The consumers are located on a Hotelling
segment with consumers on the far right preferring good A and consumers on the far left
preferring good B and consumers in the middle being indifferent between the two goods.
Upon entering the platform, a consumer is presented with a default good that he can either
purchase or search for the other good. The platform controls which good is the default. The
choice of default good can be deterministic or stochastic. The platform also controls the
cost of finding the alternative, or a search cost. The search cost captures all tangible and
intangible costs related to search, such as the consumer’s limited attention span, spending
time and effort. In this environment, the intermediary has two ways of controlling the user
search experience. First, they can invest in technology to lower the search cost, e.g. develop
a more efficient web page. Second, they can change the default search result. Its incentive
for manipulating these controls depends on whether its objective is aligned with users or
sellers in the downstream market.

We start our analysis in Section 3 with the first-best scenario in which the platform
manually allocates consumers into the downstream markets. We establish that in this case
the platform would create two non-overlapping consumer segments with one of them assigned
to market A and the other to market B. The size of optimal consumer segments depend on
the platform’s objective, and we consider maximizing consumer surplus, joint seller profits,
total welfare and joint sellers’ revenue. The objectives of maximizing the consumer surplus
and the sellers’ profits are in conflict. Specifically, suppose market B is cheaper and has
more elastic supply. Then starting from the welfare-maximizing allocation, shifting more
consumers to market B increases the consumer surplus and decreases the sellers’ profits, while
shifting more consumers to market A does the complete opposite (Theorem 2). Although
the first-best allocations could potentially be implemented using a rich set of tools, such as
transfers and search subsidies, in many practical situations the platform has only limited
tools to organize the search process.

In Section 5, we explore what economic outcomes the platform can achieve by manip-
ulating the search cost and default good. First, we establish that the first-best welfare is
achievable in a frictionless market equilibrium. Second, no other first-best objective can be
achieved in a market equilibrium, and so optimizing the platform’s revenue, sellers’ profits or
consumer surplus generally requires frictional search and manipulating the default product
(Theorem 6). In the rest of the paper, we study the optimal platform’s policies. We start
with the benchmark case when the prices in downstream markets are fixed, and then move
on to the main case of endogenous prices.

In the benchmark case when the prices are fixed in the downstream markets, consumer
search decisions do not affect prices in the second stage of the model, and so there is only
one direct channel of how search costs affect surplus on both sides of the market. First, we
find that when the platform maximizes consumer surplus net of search costs (net consumer
surplus), the optimal search cost is zero. Indeed, the platform prefers that the buyers incur
the minimal cost and find the best match. Both goals are accomplished by setting zero search
costs. On the contrary, positive search costs are necessary for the intermediary to maximize
the total revenue. Suppose good A has a higher price than good B. The revenue-maximizing
platform would prefer for each consumer to buy good A rather than good B, though buying
good B is better than them not buying at all. To push traffic to market A, the platform can
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make good A the default search result, but this only has impact if search costs are positive.
When the downstream markets have limited supply, the analysis is more subtle. Steering

buyer traffic to one of the markets by increasing the search cost affects the prices which feeds
back into the searchers’ incentives to switch into this market in the first place. Therefore
there is an additional indirect effect of search costs on surplus on both sides of the market.
Again, suppose good A has a higher price than good B, and suppose the platform strives
to maximize the sellers’ profits. Directing buyers into market A leads to higher price in
market A and lower price in market B. If the supply of good B is inelastic, price for good
B drops too much. The resulting loss in revenue on inframarginal consumers in market B
can outweigh the gain in price on marginal consumers shifted into market A.

In our first main result, we show that maximizing the sellers’ profits requires positive
search costs and defaulting consumers into the market with smaller price semi-elasticity of
supply. Specifically, suppose that good A has semi-inelastic supply, which means that the
supply of good A is inelastic or good A is expensive, and good B has semi-elastic supply,
which means that its supply is elastic or it is cheap. Defaulting consumers into market A
and raising the search cost above zero increases the sellers’ profits (Theorem 9).

Now suppose the platform’s objective is maximizing the consumer surplus net of search
costs (net consumer surplus, NCS). Again, let the supply of good A be less semi-elastic
relative to the supply of good B. We show that the first-best allocation of consumers
between the markets requires that more consumers be in market B relative to the market
equilibrium with zero search costs. Indeed, when more consumers are moved into market B,
the price of good B barely changes while the price in market A drops, that results in lower
average transaction price. To implement the feat of moving more consumers in market B in
market equilibrium, consider a policy that defaults consumers into market B and raises the
search costs. This kind of steering policy worked in case of optimizing the sellers’ profits.

The second main result of the paper shows that, surprisingly, the net consumer sur-
plus cannot be increased by increasing search costs (Theorem 10). Even though steering
consumers into market B increases the gross consumer surplus by inducing more favorable
prices for inframarginal consumers, the increase in search costs is always greater and offsets
the gain in price.

We conclude that since most search intermediaries are paid by sellers, either on a per-
transaction or revenue-sharing basis, platforms have strong incentives to maintain or create
search frictions and to manipulate defaults strategically. Absent of search costs, the market
generates the largest total surplus for the participants on the platform. However, maximizing
revenue requires steering consumers toward the products that would bring the most revenue.
To do so, the platform features these products and then creates hurdles for the consumers to
find alternative options. Therefore, the platform is optimally willing to hamper consumers
search process.

Suppose the platform maximizes its revenue which is a fixed share τ > 0 of the sellers’
revenue. The platform’s incentives are similar to the case with optimizing the sellers’ profits
but with more emphasis on price. We show that the platform optimally sets positive search
costs, and defaults consumers with greater probability to the market with higher marginal
revenue, where the marginal revenue is equal to price plus the inverse of semi-elasticy of
supply (Theorem 12).

Under vertical integration of the intermediary with one of the product markets (e.g.
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Amazon selling Amazon products on its marketplace, Google Flight Search on Google), the
intermediary has strong incentives to give prominence to its own product. Suppose the
platform earns a profit share of τ < 1 in market A, but takes all the profit in market B,
e.g. they own a subsidiary that does the supply in market B, with the given upward sloping
marginal cost curve. Then it is optimal to set positive search cost and default consumers
into market B unless A’s semi-elasticity of supply is 1/τ lower than the own supply.

Related Literature. Our paper is a contribution to the literature on search intermedia-
tion. Most of the literature on platform markets has focused on network effects of partic-
ipation (Armstrong (2006); Rochet and Tirole (2006); Weyl (2010)), and the implications
of these effects for optimal pricing, either under monopoly or oligopoly market structure.
All these papers treat the interaction of users on the platform as a blackbox. Instead, we
are concerned with the intermediary’s incentives to organize the users’ search when they are
already on the platform.

The existing literature on search intermediation addressed some aspects of consumer
search, such as diversion and information withholding (Armstrong et al. (2009); Hagiu and
Jullien (2011); Ellison and Wolitzky (2012); Athey and Ellison (2011); Edelman and Lai
(2016)), but either did not study the intermediary’s incentives or did not study defaults in
combination with direct search costs.

Ellison and Ellison (2009) provide the empirical evidence of obfuscation from a price com-
parison website and find that sellers intentionally hamper information to make consumers
less price sensitive. Ellison and Wolitzky (2012) develop a theoretical model in which ob-
fuscation is individually rational for oligopolistic firms. In their model, a firm “obfuscates”
search by making a consumer pay more to learn the price. In our paper search costs are
controlled by the platform, thus being exogenous to the sellers, and we study the interme-
diary’s incentives to reduce them. Also, unlike in this and other standard search-theoretic
models (Stahl (1989); Ellison (2005)), we assume that the consumers know the equilibrium
prices and directly incur a cost of switching to an alternative good.

The most closely related paper to ours is Hagiu and Jullien (2011), who study an in-
termediary’s incentives to divert consumer search. In their model, diversion is platform’s
manipulation of default product and they assume that the platform observes consumer char-
acteristics and conditions the default on consumer type. We, on the contrary, assume that
diversion is anonymous—the default good is the same for all consumers. This distinction
results in opposite incentives for the platform to reduce search costs: In Hagiu and Jullien
(2011), the intermediary would always want to decrease consumers’ search costs if it could,
while in our paper we establish the opposite.

Another closely related paper by Armstrong, Vickers and Zhou (2009) explores how
manipulation of default product affects competition in search markets and implications for
consumer surplus, profit, and welfare. Similar to our setting, the platform chooses a default
product, but in their model, there is a range of differentiated products each produced by a
separate firm. Armstrong et al. (2009) show that the prominent firm sets lower price because
it has a large population of randomly drawn consumers (relatively price elastic), versus the
other firms who also have consumers who are dissatisfied with their other options and are
therefore rather more price inelastic. The market structure is different in our paper, with
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competitive markets for each good, that results in higher price for the prominent good as
opposed to lower in Armstrong et al. (2009).

2 The Model of Mediated Consumer Search
This section builds a model of a two-sided market with horizontally differentiated consumers
who search for products in downstream markets, and their search process is mediated by the
platform. We are interested in how intermediaries can affect market outcomes by channeling
consumer demand towards different products. In later sections we will use the model to
analyze the intermediary’s incentive in setting two parameters of search process: search
costs and default product.

There are two products, and a continuum of horizontally differentiated consumer types.
We focus on the case where consumers know the characteristics of the two products ex-ante,
and so the cost involved in finding the non-default product should be interpreted as a search
or switching cost, rather than an information acquisition cost. We assume that consumer
tastes are private information, so that the intermediary cannot deliver personalized defaults
or search results.

There are two types of goods available, A and B. There are a measure one of potential
buyers for these good, with privately-known types x uniformly distributed on the unit in-
terval [0, 1]. Buyers have unit demand, and differentiated preferences over the two goods.
Type x has valuation vA(x) for good A, where vA(x) is strictly increasing and continuously
differentiable in x, vA(0) = 0 and vA(1) = v̄. They have valuation vB(x) for good B, where
vB(x) is strictly decreasing and continuously differentiable in x, vB(1) = 0 and vB(0) = v̄.
Preferences are thus “Hotelling”, in the sense that buyers who value the A good more value
the B good less. A special case arises when valuations are symmetric around x = 0.5 with
vA(x) = vB(1−x); we will refer to this as the case of symmetric valuations. Another (more)
special case occurs when vA(x) = vB(1 − x) = v̄x; we will call this the case of “uniform
valuations”.

We assume that buyers are risk neutral and have quasi-linear utility. Buyers payoff
equals to their valuation for the good they purchased, less the price paid, less any search
costs (introduced below).

The supply side is modeled by upward-sloping supply curves Sj(p), j = A,B, where Sj(p)
weakly increasing and continuously differentiable in p. When supply is perfectly elastic at
some prices pA and pB, we will say we are in the “fixed-price” case, as regardless of the search
technology, markets will always clear at these prices. Unless specified otherwise, in the rest
of the paper the supply curves have the familiar interpretation of (short-run) marginal cost
curves (where marginal costs include payments to the platform) under the assumption that
supply is perfectly competitive. But even when marginal costs are constant, an upward-
sloping supply curve may arise due to endogenous seller entry: higher prices may induce
sellers in the broader market to affiliate with the platform, as those prices allow them to
cover fixed entry costs.

Central to our paper is the idea that the platform may allocate buyers to a default market
(the market for A or the market for B). Buyers who want to switch to the other market
must pay a search cost. Both the default and the search cost may be manipulated by the
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platform.
The timing is as follows. Buyers simultaneously play a two stage game. In the first stage,

each buyer is assigned a default good by the platform, privately known to them. We assume
that the default good is assigned to be good A with probability α, independently across
buyers. Some important special cases include the case where α = 1 (the default is always
good A) and α = 0 (the default is always good B). Since the types are private, the platform
cannot offer type-specific defaults (e.g. assigning buyers to the market for the good they
value most). Each buyer then simultaneously makes the decision whether to switch their
assignment to the other good, paying a switching cost of c ≥ 0 to do so.

In the second stage, the market for each good is cleared. Each consumer now belongs to
a market (either their default good or the one they switched to). Let the set of consumers
in the market for good A be A, and similarly those for B be B. Then this induces demand
curves:

DA(p) = {x : x ∈ A , vA(x) ≥ p}
DB(p) = {x : x ∈ B , vB(x) ≥ p}

(1)

Each market is cleared at the price that equates supply and demand:

SA(pA) = DA(pA)

SB(pB) = DB(pB)
(2)

To simplify later analysis, we make a “full coverage” assumption. In the usual Hotelling
model, this means assuming that demand is large relative to supply (marginal costs), so that
everyone ends up purchasing a good in equilibrium. Similarly, we will say that the market is
fully covered if in the (unique) equilibrium with c = 0 (i.e. in the absence of search frictions),
all types buy a product.

Assumption 1 (Full Coverage). There exists a consumer type x0 such that 1 − x0 ≤
SA(vA(x0)) and x0 ≤ SB(x0).

The assumptions posits that there is excess supply in both markets at the price some
type x0 is willing to pay, which in turn ensures that every type earns positive surplus (types
below x0 can buy B, types above x0 can buy A).

3 Platform’s First-Best Solutions
In this section, we study how the platform would allocate consumers between the downstream
markets if it could observe their types and force them to stay in those markets. These
are the allocations the platform would implement had it had rich set of tools for steering
consumers. In the main part of the paper we compare these allocations to those achievable in
a more realistic setting with imprefect tools: search costs and default product. We find that,
regardless of the platform’s objective, the first-best solutions require sharp segmentation into
the markets (in the sense made clear below), and welfare-maximizing allocation is between
consumer-optimal allocation and producer-optimal.
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Only for this section, assume that the stage of decetralized search is replaced with the
platform manually allocating consumers to markets conditional on their type x. That is, the
platform chooses sets A and B such that A∪B ⊂ [0, 1]. The second stage is the same, with
the demands being formed according to (1) and the markets clear at perfectly competitive
prices.

We are interested in understanding the platform’s incentives to allocate consumers be-
tween the downstream markets under several objective functions. What is the optimal allo-
cation of consumers when the platform maximizes the welfare? The consumer surplus? The
joint seller profits? The sellers’ revenue? Unless specified otherwise, we assume throught the
paper that the supply curves are equal to the marginal cost curves and sellers’ fixed costs
are zero.

The breakdown of consumers into sets A and B can potentially be complex and the sets
can overlap so that matching of consumers to the markets is “fuzzy”. The next lemma shows
that the fuzzy allocation is never optimal, and there are no leftover consumers.

Lemma 1. If the platform maximizes weighted average of consumer and producer surplus,
or the sellers’ revenue, then there is a cutoff xFB such that consumers with x < xFB are
assigned to market B and consumers with x > xFB are assigned to market A.

The optimal cutoff xFB depends on the platform’s objective, and we can say something
about it.

Theorem 1. The first-best welfare is attained by using cutoff xFBW that satisfies:

vA(xFBW )− pFBWA = vB(xFBW )− pFBWB , (3)

where pFBWA and pFBWB are competitive prices that realize in the second stage.

There is an intuitive explanation for (3). The left hand side is the type-xFBW consumer’s
utility of being in market A, while the right hand side is his utility of being in market B.
Therefore, type xFBW is indifferent between being in A and B. As a side note, monotonicity
of vA and vB implies that at fixed prices pAFBW and pB

FBW , all consumers do not have
private incentives to switch the allocation they are given by the platform. This observation
will lead to Theorem 6 below.

Denote the first-best cutoffs for maximizing consumer surplus, producer surplus and
sellers’ revenue by xFBC , xFBP and xFBR, respectively.

Theorem 2. Let pj and εj be price and supply elasticiy in market j evaluated at the welfare-
maximizing allocation with cutoff xFBW .

• If pA/εA > pB/εB, then xFBP < xFBW < xFBC.

• If pA/εA < pB/εB, then xFBP > xFBW > xFBC.

Also, xFBR 6= xFBW .

The result shows that if the platform has full control, the allocations are distinct for
every objective the platform might have. Moreover, the consumer and producer surplus are
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in conflict. Specifically, starting at the welfare-maximizing allocation, if market j is more
expensive and/or has less elastic supply, then moving more consumers into market j increases
producer surplus and decreases consumer surplus. And conversely, shifting consumers away
from market j decreases producer surplus and increases consumer surplus.

The question is whether the first-best cutoffs can be implemented using the restricted set
of platform’s tools, search cost c and default product α. This is what we turn on to now.

4 Market Equilibrium
In this section we prove the existence and uniqueness of the market equilibrium with con-
sumer search. We also give initial comparative static of how key policy variables, search
costs and default product, affect the structure of the equilibrium.

The model described in Section 2 is an extensive form game of incomplete information.
The solution concept we use is subgame perfect equilibrium with price equilibrium in the
second stage. In the second-stage of the game, prices pj will be determined by equating
supply and demand in market j. At that point, it is weakly dominant for each type x to
either buy the good (if vj(x) ≥ pj) or not (if vj(x) < pj). As a result, they will earn the
payoff of

uj(x, pj) = max{vj(x)− pj, 0}.

Moving back to the first stage, buyers must decide whether to search given their type
and their current (default) product. Since there are a continuum of buyers, their individual
actions have no effect on the market-clearing price in the second stage, and so they behave
as though they face fixed prices pj in each market.

Figure 1a illustrates the trade-off in the consumer search decision. In the face of fixed
prices, the payoff from participating in market uA(x, pA) is increasing in x since valuations are
rising; conversely the payoff from participating in market B, uB(x, pB), is falling. Whenever
the difference between the two exceeds the search cost c, agents who are defaulted into their
less preferred market will switch.3 As depicted, this gives rise to a pair of thresholds xB and
xA such that types below xB who have a default good of A will choose to search; and those
with type above xA with a default good of B will choose to search, where the thresholds are
defined by:

uA(xA, pA)− uB(xA, pB) = c

uB(xB, pB)− uA(xB, pA) = c
(4)

Types between [xB, xA] do not search.
Since the search decisions take this threshold form for all possible prices pj, they will also

be pinned down by thresholds xA and xB in any equilibrium. Demand in each market comes
from a mixture of the extremal types who are willing to search for their preferred product
if necessary (for good A, types from xA to 1), and the never-searchers between [xB, xA] who
were given the product as a default.

3In the special case where search costs are zero, it is possible that a positive mass of agents may be
indifferent about searching versus not searching. We refine this away by assuming that indifferent types do
not search.
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uA(x)

uB(x)

xB xA

c
c

(a) Interim payoff functions.

pA

qA

v̄

vA(xA)

vA(xB)

(b) Demand curve in the case of uni-
form valuations.

Figure 1

Because these two groups are ordered in their willingness-to-pay, for fixed thresholds xB
and xA the demand curves Dj(p, xA, xB) take a piecewise form. For example, in market A:

DA(p, xA, xB) =


1− xA + α (xA − xB) p ≤ vA(xB)

1− xA + α
(
xA − v−1

A (p)
)

vA(xB) < p ≤ vA(xA)

1− v−1
A (p) vA(xA) < p ≤ v̄

0 p > v̄

(5)

Figure 1b shows the (inverse) demand curve for product A in the special case of uniform
valuations, which imply piecewise linear demand. Notice its “bowed-out” shape, with the
slope of the demand curve falling in prices. The intuition for this is that price changes at low
prices have little effect on demand, because the inframarginal consumers are non-searchers,
and only a fraction α of those will respond to price changes (the remainder stick with their
default of product B). The platform can thus exert some control over the price elasticity of
demand faced by sellers in each market by manipulating defaults and search costs.

Figures 1a and Figure 1b respectively held prices and thresholds fixed. We now want to
look for an equilibrium of this game: a set of prices (pA, pB) that equate supply and demand,
where demand depends on the search thresholds (xA, xB); and a set of search thresholds
(xA, xB) that are consistent with optimal search behavior when consumers correctly antici-
pate prices (pA, pB).

Theorem 3 (Existence and Uniqueness). The equilibrium exists and is unique.

Now we give a sketch of the proof and then provide the comparative static results. To
show existence, first eliminate the prices from the equilibrium analysis, by noting that the
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xB

xA

∆B = −c

∆A = c

E0

(a) E0 is the unique equilibrium.

xB

xA

∆B = −c

∆A = c

E0
∆B = c′

∆A = c′

E1

(b) Comparative statics when switching
cost c decreases, c′ < c.

Figure 2: The curves ∆A = c and ∆B = −c are respectively the loci of types who are
indifferent about searching for good A (good B) if defaulted to market B (market A).

thresholds (xA, xB) are sufficient to pin down demand, and given exogenous supply, therefore
sufficient for prices. We can write consumer utility in the first stage as uj(x;xB, xA) ≡
uj(x; pj(xB, xA)). Let ∆A(xA, xB) ≡ uA(xA;xB, xA) − uB(xA;xB, xA) and ∆B(xA, xB) ≡
uA(xB;xB, xA) − uB(xB;xB, xA). The functions ∆A and ∆B are equal to the payoff gain
from switching to market A from market B for types xA and xB respectively. In equilibrium,
it must be that xA is just indifferent about switching to A and paying c, and xB is just
indifferent between switching to A and being compensated with c. Thus any potential
equilibrium thresholds must satisfy the following pair of equations:

∆A(xA, xB) = c

∆B(xA, xB) = −c
(6)

Figure 2a plots graphical illustration of (6) in threshold space.
Curves ∆A = c and ∆B = −c are downward sloping: in both equations, the payoff

difference from participating in market A relative to B is increasing in both xB and xA, both
because of direct effects (e.g. in the first equation, type xA values A more as xA increases)
and competition (whenever either xA or xB increases, market B gets more competitive and
market A less so). Intuitively, curve ∆A = c should be everywhere steeper than the second,
as a small change in xA has a big effect (both direct and through competition) which must
be met by a big change in xB to hold the payoff differential constant and equal to c. The
complete proof is in the appendix.

We conclude this section with some comparative statics on the design parameters available
to the platform: the search costs c, and the default probability α. Consider Figure 2b. When
search costs decrease, the curve ∆A = c shifts left (for the same xB, the threshold type xA
who searches is lower), while the curve ∆B = −c shifts up (for the same xA, the threshold
type xB who searches is higher). In the new equilibrium E1 we have lower xA and higher xB
and thus more search.
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qA

vA(xA)

vA(xB)

vA(x′A)

vA(x′B)

(a) Demand curve when switching cost
c decreases.

pA

qA

vA(xA)

vA(xB)

vA(x′A)

vA(x′B)

(b) Demand curve when the default as-
signment to good A increases.

Figure 3

Theorem 4 (Comparative statics in search costs). Equilibrium thresholds xB ≤ xA are
decreasing and increasing respectively in the search cost c. As c → 0, they converge to a
single threshold xA = xB ≡ x0; as c→∞, they hit the boundaries of the type-support xB = 0
and xA = 1. When A is the default product (α = 1), pA is increasing and pB is falling in c;
conversely when B is the default (α = 0), pB is increasing and pA is falling.

Decreasing the search costs thus changes the demand curves in a predictable way, as
illustrated in Figure 3a. In market A, the threshold xA falls and so the kink in demand
occurs at a lower value, raising demand in the middle of the distribution. But because the
threshold xB rises, demand from low value buyers falls. The same is true of market B. The
effect on prices is ambiguous, as in general it depends on the supply of goods A and B. But
in the particular case where one of the goods is assigned as the default for all consumers,
search costs uniformly increase demand for that good, implying that prices (weakly) rise.
Thus the platform can steer demand to a particular good by making it the default and by
making the platform more “opaque” (increasing search costs).

A change in α, the probability a consumer sees a default of A, potentially has ambiguous
effects on the thresholds. On the one hand, there is a direct effect of increased demand for
good A, since more consumers are assigned it as a default. An so, in equilibrium consumers
will be less willing to search for A in anticipation of increased demand from non-searchers
and higher prices, and so one might expect both xB and xA to rise. This need not be the
case in general though, and depends on how the ∆A and ∆B curves change as α changes,
which in turn depends on the supply curves. In the special case of perfectly elastic supply,
this second channel is shut down: prices do not respond to demand shifts, and so increasing
α unambiguously increases demand for A and decreases it for B.
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vA(xA)

vA(xB)

(b) Demand change when the default
assignment to good A increases (α in-
creases) holding thresholds fixed.

Figure 4

The next result shows that even with inelastic supply, the second channel is weaker, and
both thresholds increase in α.

Theorem 5 (Comparative statics in default probability). When all buyers purchase a good,
equilibrium thresholds xB and xA are (weakly) increasing in the default probability α.

5 Search Costs and Default Product: Welfare Analysis
In this section we study how consumer search costs and the choice of default product affect
the equilibrium consumer surplus, joint seller profits and the intermediary’s revenue. To the
extent the intermediary controls those variables, the analysis sheds light on the intermediary’s
incentives on reducing search costs and diverting consumers. We find that it is necessary to
have positive search costs to maximizing the joint seller profits. We also prove the alignment
theorem that states that the policies that maximize consumer surplus and welfare coincide.

First, we establish that only first-best welfare can be achieved in market equilibrium, and
so maximizing platform’s revenue, producer or consumer surplus requires frictional search
and manipulating the default product.

We say that an allocation (A,B) of consumers between the markets is implementable if
there are c and α such that (A,B) realizes in the market equilibrium. The gross consumer
surplus (GCS) is the joint consumer utility they obtain ignoring the search costs, The (net)
consumer surplus (NCS or CS) includes the incurred search costs.
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Theorem 6. The first-best welfare is attained in market equilibrium by setting c = 0. The
first-best net consumer surplus is not attainable in market equilibrium.

For the proof of the first part of the theorem holds, note that when c = 0, the thresholds
xA and xB coincide, denote it by x0 = xA = xB. From (6) we have that vA(x0) − pA =
vB(x0)− pB. Compare this expression with (3) and obtain x0 = xFBW .

For the second part of the theorem, observe that the only implementable allocation
under c = 0 is welfare-maximizing. Implementing the consumer optimal allocation requires
implementing the cutoff xFBC , which is distinct from xFBW by Theorem 2. Getting there at
least requires increasing c, and so the net consumer surplus will be below the first-best.

Similarly, implementing profit- or revenue-maximizing first-best allocations will require
frictional search. Since sellers do not incur search costs, it can be possible to implement
those allocations. In this paper we do not provide the full implementability result but
instead characterize the second-best net consumer and producer surplus and check whether
they require c > 0.

We start with the analysis of benchmark case when prices are fixed to lay down the basic
intuition and then move on to the main case of competitive prices.

5.1 Benchmark: Fixed Prices

In this section, we consider a benchmark when the prices in both markets pA and pB are
fixed. This is an easy case because c and α only affect the consumers in the first stage of
the game when they search, while the indirect effect on prices is absent.

Theorem 7. Suppose prices are fixed. Then consumer surplus is strictly decreasing in c for
any α.

Proof by picture: the prices are fixed, so the consumer surplus is just the area under the
uA and uB terms in Firgure 1a, or an α-weighted average in the middle part. Clearly things
get worse as c increases and the thresholds move outwards.

The next result characterizes the choice of the default and the search cost that maximizes
the joint seller revenue. Since the prices are fixed, the revenue maximization effectively
requires to force as many consumers as possible to buy the more expensive product.

Theorem 8. Suppose prices are fixed. The platform maximizes revenue by choosing the
more expensive product as the default, and choosing the highest c such that everyone still
buys a product.

5.2 Perfect Price Competition in Downstream Markets

This section is the heart of the paper in which we analyze the main case with upward sloping
supply curves. Price pj in market j ∈ {A,B} is pinned down in price equilibrium:

Sj(pj) = Dj(pj),

where Dj is defined in (5) and Sj is increasing.
The next result is the first main result of the paper and establishes that frictional search

is necessary to maximize the joint sellers’ profits.
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Theorem 9. Let the supply curves be equal to the marginal cost curves and sellers’ fixed
costs be zero. A platform that wants to maximize joint seller profits should set c > 0 and
default consumers into the less semi-elastic market, that is the market with higher pj/εj.

Suppose market A has semi-inelastic supply, i.e. a higher price and/or less elastic supply
relative to market B. Then the platform can incrase joint seller profits by moving more
consumers into market A. It can do so by setting good A as the default and raising the
search cost c. Further, although good A as the default generates a gain in profits, the
deterministic default need not be optimal. Defaulting everyone into A weakens demand in
market B, and so it might be optimal to use the stochastic default.

Now we will sketch the proof of Theorem 9 because it is illustrative for the economic
forces behind the result and also because other results will have similar economic intuition.
The economics of the intermediary’s intervention can be understood through the transfer of
buyers between the two markets. Denote by qj the quanitity sold in market j. Any change in
platform’s policy induces the equilibrium change in quantities (dqA, dqB). The seller profits
in market A is

PSA =

ˆ pA

0

SA(t)dt. (7)

from where we can find the change in total seller surplus:

dPS = dPSA + dPSB = qAdpA + qBdpB

In price equilibrium, Sj(pj) = qj, and the platform’s policies affect only the demand. Thus,

dpj = dqj/S
′
j(pj).

And so,

dPS =
qA

S ′A(pA)
dqA +

qB
S ′B(pB)

dqB

=
pA
εA
dqA +

pB
εB
dqB,

where εj is price elasticity of supply in market j.
When all buyers purchase a product,

dqA = −dqB.

Therefore,

dPS =

(
pA
εA
− pB
εB

)
dqA. (8)

The key aspect concerns which dqA the platform can induce when its only tools are c and
α. Towards this, find the expression for dqA via changes in thresholds xA and xB. Let
a differential increase in search cost dc induce (dxA, dxB). Increase in xA leads to mass
(1−α)dxA of buyers to stop searching into market A and mass αdxB to start searching into
market B. Therefore,

dqA/dc = −(1− α)dxA/dc− αdxB/dc. (9)
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Start with c = 0. By Theorem 4, xA increases in c while xB decreases in c. Suppose market
A is relatively semi-inelastic, that is pA/εA − pB/εB > 0. Default everyone into market A
by setting α = 1 and increase c by a little bit. By (9), dqA is positive, and so consumers are
shifted into market A. By (8), total seller surplus goes up.

The next lemma is the intermediate result that helps understand the outcome of the
market equilibrium. It shows that the decentralized economy makes the same search deci-
sions as the social planner who treats prices as given and maximizes consumer surplus with
respect to the buyers’ search decisions. In other words, starting from equilibrium outcome
(xB, xA, pB, pA), the social planner cannot improve the net consumer surplus by choosing
other search thresholds (xB, xA) while taking the prices, c and α fixed.

Lemma 2. For any c ≥ 0 and α, the equilibrium values of (xB, xA) are equal to those the
social planner would choose to maximize the net consumer surplus, taking the equilibrium
prices as given.

The lemma follows from the fact that the consumers do not internalize the effect of their
search decisions on prices because they take prices as given.

Now suppose the platform’s objective is maximizing the net consumer surplus. For con-
creteness, let pA/εA > pB/εB, that is market A is more expensive and/or inelastic while
market B is cheap and/or price elastic. By Theorem 2, the first-best consumer optimal allo-
cation has more consumers in market B relative to the market equilibrium with c = 0. Even
though we know from Theorem 6 that the first-best consumer surplus is not achieavable in a
market equilibrium, we could hope to increase NCS using the policy described in Theorem 9
for increasing the sellers’ profits. Namely, steer consumers into market B by defaulting them
into good B and raise the switching cost. This policy increases gross consumer surplus be-
cause price in market B barely changes while the price in market A drops. If the resulting
price differential is large enough, it compensates the losses from higher search costs. It turns
out, however, that the increase in GCS is always smaller that the increase in the search costs,
and so raising c above zero can only decrease NCS. This is the second main result of the
paper.

Theorem 10 (Alignment theorem). A platform that wants to maximize net consumer sur-
plus sets c = 0.

This result implies that maximizing either welfare or the net consumer surplus require
the same policy of the frictionless search.4

The next result is in line with the existing results in the intermediation literature and
shows that generically the platform can increase both net consumer surplus, sellers’ profits
and welfare by diverting consumers. The difference from Hagiu and Jullien (2011) is that
the platform does not observe the consumer type and set the default product that applies
to everyone. Nevertheless, the diversion is effective whenever c > 0.

Theorem 11 (Anonymous diversion). Suppose c > 0. Then:

• Welfare is maximized with deterministic default, i.e. the optimal α is either 0 or 1.
4Remember that when c = 0, changing α has no bite.
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• The joint sellers’ profits can be increased by increasing the default probability of the
good with higher pj/εj.

• The net consumer surplus increases in α if qA − qB > K (pA/εA − pB/εB) for some
K ∈ (0, 2/minx{vA′(x)− vB ′(x)}).

6 Implications for Two-sided Search Intermediaries
In this section we discuss the implication for design of two-sided search intermediaries with
respect to manipulating the consumer search costs and setting the default (recommended)
products. So far, we have been thinking about the platform abstractly, as an institution
with different potential objectives. Now we assume the platform charges fees and has a
profit function. What would it optimally do?

First, assume that the platform takes a share τ of every seller’s revenue, and the platform’s
objective is to maximize its revenue. The next result shows that in this situation the platform
also has incentives to maintain positive search costs with the choice of the default product
similar to the logic when maximizing the sellers’ profits.

Theorem 12. Suppose the platform takes a fixed cut τ from sellers’ revenue. A platform
that maximizes its revenue should set c > 0. A good with higher pj(1 + ε−1

j ) should be set as
the default, that is the more expensive good with less elastic supply.

The default good is the good with lower semi-elasticity of supply and higher price, but
compared to the profit-maximizing platform, there is more weight on price (compare with
Theorem 9).

Now consider the case of vertical integration of the intermediary with one of the product
markets, e.g. Amazon selling Amazon products on its marketplace, Google Flight Search
on Google. Suppose the platform earns a profit share of τ in market A, but takes all the
profit in market B. What does the platform optimally do now? The next result shows that
the answer is a modification of Theorem 9, so that consumers are defaulted into the less
semi-elastic market but favoring market B in weighting.

Theorem 13. Suppose the platform is vertically integrated with market B and takes share
τ of profit in market A. The platform optimally sets c > 0. The default is good A if
τpA/εA > pB/εB and B, otherwise.

If supply elasticities are similar in both markets, and the platform’s fee τ is small, then
the platform has strong incentives to give prominence to its own product B by setting it as
the default and maintaining the positive search cost.

7 Conclusion
Recent years have seen substantial investments by platforms in reducing search costs. Yet,
there has been relatively little work on understanding what the implications of decreased
search costs are for the parties involved. In this paper, we have provided positive results to
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shed some light into the effects of search on platform on welfare and revenue, which may
help explain and guide platform policy related to search investments. Even though search
frictinos lead to lower welfare generated on the platform, we showed that on the margin
of frictionless search, the platform can generically increase sellers’ revenue. If the platform
takes a cut of the sellers’ revenue, it has strong incentives to maintain positive search costs.
On the other hand, if the platform favors consumers, then the platform would want to invest
in decreasing search.

It is generally recognized that online markets attract more buyers than offline markets
by allowing the consumers to find very niche and unique products (e.g. Ellison and Elli-
son (2009)). As such, easier search raises demand on the platform. At the same time, it
introduces competition between providers because it is easy for a buyer to switch between
the providers once on the platform. The analysis of this situation requires a richer model
with oligopolistic market structure and endogenous participation. We hope to develop this
extension in the future work.
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Appendix

A Proofs
Proof. [Proof of Lemma 1]

Producer surplus—depends only on prices and quantities. Therefore, it is impossible to
improve over a cutoff allocation with given (qA, qB). If qA + qB < 1, then a better allocation
is to increase qA until the full coverage. This works because the Full Coverage assumption
guarantees all buyers will buy, and so prices follow quantities by pj = S−1

j (qj).
Consumer surplus. Suppose qA+qB = 1 but the allocation is fuzzy. The cutoff allocation

with the same quantities would put all x < qB into B and all x > qB in to A . Since the
allocation is fuzzy there is x2 > qB who are in market B and x1 < qB who are in market
A. Take mass dx around x2 and mass dx around x1 and swap them. The gain in consumer
surplus is

dx (uA(x2)− uB(x2) + uB(x1)− uA(x1)) = dx (uA(x2)− uA(x1) + uB(x1)− uB(x2)) ≥ 0,

because uA is increasing and uB is decreasing. Suppose qA+ qB < 1. Then you can arbitrary
allocate the leftover consumers to markets because uj(x) ≥ 0 for j = A,B.

Welfare—is equal to the sum of producer and consumer suprlus. Since consumer surplus
can be improved, and producer surplus is neutral to shuffling, the total welfare is maximized
at a cutoff allocation.

Sellers’ revenue. Similar argument as for the producer surplus.

Proof. [Proof of Theorem 1]
By Lemma 1, the optimal allocation is characterized by a cutoff x∗ so that consumers

x < x∗ are in market B and x > x∗ are in market A. With a cutoff allocation, the demand
in markets A and B are

DA(p) =

{
1− v−1

A (p), pA > vA(x∗)

1− x∗, pA < vA(x∗)
(10)

DB(p) =

{
1− v−1

B (p), pB > vB(x∗)

x∗, pB < vB(x∗)

The total welfare is

W =

ˆ pA

0

SA(t)dt+

ˆ v̄

pA

DA(t)dt+

ˆ pB

0

SB(t)dt+

ˆ v̄

pB

DB(t)dt.

Differentiate W with respect to x∗. At competitive prices, Sj(pj) = Dj(pj) for j = A,B,
and so:

dW

dx∗
= −(vA(x∗)− pA) + vB(x∗)− pB.

At the optimum dW/dx∗ = 0, which proves the theorem.
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Proof. [Proof of Theorem 2]
We will deal sequentially with consumer surplus, producer surplus, and then revenue.
Consumer surplus. By Lemma 1, the optimal allocation is in cutoff form so that con-

sumers x < x∗ are in market B and x > x∗ are in market A. The consumer surplus is

CS =

ˆ v̄

pA

DA(t)dt+

ˆ v̄

pB

DB(t)dt.

Using (10),

dCS

dx∗
= −(vA(x∗)− pA)− dpA

dx∗
qA + vB(x∗)− pB −

dpB
dx∗

qB

Since the allocation is in cutoff form, qA = 1− x∗ and qB = x∗.

dCS

dx∗
= −(vA(x∗)− pA) +

dpA
dqA

qA + vB(x∗)− pB −
dpB
dqB

qB

In price equilibrium, Sj(pj) = qj, and so

dCS

dx∗
= −(vA(x∗)− pA) +

pA
εA

+ vB(x∗)− pB −
pB
εB

= vB(x∗)− pB − (vA(x∗)− pA) +
pA
εA
− pB
εB
. (11)

Evaluated at the welfare-optimal allocation xFBW ,

dCS

dx∗

∣∣∣∣
x∗=xFBW

=
pA
εA
− pB
εB
.

Therefore, the consumer-optimal cutoff xFBC > xFBW if and only if pA
εA
− pB

εB
> 0 .

Sellers’ profits. Again, by Lemma 1, the optimal allocation is in cutoff form. The sellers’
profits is:

PS =

ˆ pA

0

SA(t)dt+

ˆ pB

0

SB(t)dt.

dPS

dx∗
=
dpA
dx∗

qA +
dpB
dx∗

qB = −dpA
dqA

qA +
dpB
dqB

qB = −pA
εA

+
pB
εB
. (12)

Therefore, the seller-optimal cutoff xFBP < xFBW if and only if pA
εA
− pB

εB
> 0.

Sellers’ revenue. Similar to what we did above,

R = pAqA + pBqB.

dR

dx∗
= −pA

(
1

εA
+ 1

)
+ pB

(
1

εB
+ 1

)
.

Therefore, generically, xFBR 6= xFBW . Also,

dR

dx∗
=
dPS

dx∗
+ pB − pA,

and so xFBR 6= xFBP .
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Proof of Theorem 3. We prove the theorem in two parts. First, we show existence with
Brouwer’s fixed point theorem. We can characterize equilibria by ordered threshold pairs
(xb, xa) ∈ [0, 1]2 — such that x < xb search into B, x > xa search into A and the rest do
not search — and let T : [0, 1]2 → [0, 1]2 be a mapping from a pair of buyer thresholds to
a new pair that describes those buyers indifferent between searching (either into A or B)
and not searching. Prices pA and pB as solutions of (2) are continuous functions of (xB, xA).
Thus mapping T is continuous. The set [0, 1]2 is compact, so Brouwer’s theorem ensures the
existence of a fixed point, which is an equilibrium.

Uniqueness is more involved. First we introduce a bit of notation. Let x = (xB, xA), and
define s(x;x) = uA(x)−uB(x) be the difference between A and B market utilities for a type
x buyer — since this depends on the behaviors of other buyers, we parameterize this by the
thresholds. Then let S(x) ≡ (s(xB;x), s(xA;x)) give the market differences to the threshold
types.

Equilibria are characterized by{
uA(xB)− uB(xB) = −c
uA(xA)− uB(xA) = c

which we rewrite in a concise form as

S(x) = (−c, c) = c. (13)

Below we show that the principal minors of Jacobian matrix of S are positive5 everywhere.
Then by Gale and Nikaido (1965), the mapping is one-to-one and hence S(x) = c has a
unique solution.

The Jacobian matrix is

J =

[
ds(xB)
dxB

ds(xB)
dxA

ds(xA)
dxB

ds(xA)
dxA

]
. (14)

There are four cases of (xB, xA) we need to deal with separately:

I. v−1
A (pA) < xB ≤ xA < v−1

B (pB),

II. v−1
A (pA) < xB < v−1

B (pB) < xA,

III. xB < v−1
A (pA) < xA < v−1

B (pB),

IV. xB < v−1
A (pA) < v−1

B (pB) < xA.

Full Coverage assumption implies that v−1
A (pA) < v−1

B (pB), and so there are only four cases
described above.

5We use “positive” and “nonnegative” language in the paper.

20



Case I. In this case, pA < vA(xB) and pB < vB(xA). We can find how prices change with
xB and xA:

dpA
dxA

= − 1− α
S ′A(pA)

dpA
dxB

= − α

S ′A(pA)

dpB
dxB

=
α

S ′B(pB)

dpB
dxA

=
1− α
S ′B(pB)

We have

duA(xA)

dxA
= v′A(xA) +

1− α
S ′A(pA)

duA(xA)

dxB
=

α

S ′A(pA)

duB(xA)

dxA
= v′B(xA)− 1− α

S ′B(pB)

duB(xA)

dxB
= − α

S ′B(pB)

And so,

ds(xA)

dxA
= v′A(xA)− v′B(xA)︸ ︷︷ ︸

=:X1

+
1− α
S ′A(pA)

+
1− α
S ′B(pB)︸ ︷︷ ︸

=:X3

(15)

ds(xA)

dxB
=

α

S ′A(pA)
+

α

S ′B(pB)
=: X4 (16)

Similarly,

duA(xB)

dxA
=

1− α
S ′A(pA)

duA(xB)

dxB
= v′A(xB) +

α

S ′A(pA)

duA(xB)

dxA
= − 1− α

S ′B(pB)

duB(xB)

dxB
= v′B(xB)− α

S ′B(pB)

And so,

ds(xB)

dxB
= v′A(xB)− v′B(xB)︸ ︷︷ ︸

=:X2

+
α

S ′A(pA)
+

α

S ′B(pB)︸ ︷︷ ︸
=X4

(17)

ds(xB)

dxA
=

1− α
S ′A(pA)

+
1− α
S ′B(pB)

= X3 (18)
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J =

(
X2 +X4 X3

X4 X1 +X3

)
The Jacobian is equal to

det J =
ds(xB)

dxB

ds(xA)

dxA
− ds(xB)

dxA

ds(xA)

dxB
= (X2 +X4)(X1 +X3)−X3X4 = X1X2 +X1X4 +X2X3.

Since vA is increasing, vB is decreasing and the supply curves are increasing, we have
that Xj > 0 for all j = 1, 2, 3, 4. Therefore,

det J > 0.

Additionally, all diagonal elements of Jacobian matrix are positive, ds(xB)
dxB

> 0 and ds(xA)
dxA

>
0. Therefore, Gale and Nikaido (1965) applies and the solution to (13) is unique.

The other cases are done in a similar fashion, and we provide all the necessary calculations
in the rest of the proof.

Case II. In this case, pA < vA(xB) and vB(xB) > pB > vB(xA).

dpA
dxA

= − 1− α
S ′A(pA)

dpA
dxB

= − α

S ′A(pA)

dpB
dxB

=
α

S ′B(pB)− 1−α
vB ′(vB−1(pB))

dpB
dxA

= 0

We find:

ds(xA)

dxA
= v′A(xA) +

1− α
S ′A(pA)

> 0

ds(xA)

dxB
=

α

S ′A(pA)

ds(xB)

dxB
= v′A(xB)− v′B(xB) +

α

S ′A(pA)
+

α

S ′B(pB)− 1−α
vB ′(vB−1(pB))

> 0

ds(xB)

dxA
=

1− α
S ′A(pA)

It is easy to check that det J > 0.
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Case III. In this case, vA(xA) > pA > vA(xB) and pB < vB(xA).

dpA
dxA

= − 1− α
S ′A(pA) + α

vA′(vA−1(pA))

dpA
dxB

= 0

dpB
dxB

=
α

S ′B(pB)

dpB
dxA

=
1− α
S ′B(pB)

We find:

ds(xA)

dxA
= v′A(xA)− vB ′(xA) +

1− α
S ′A(pA) + α

vA′(vA−1(pA))

+
1− α
S ′B(pB)

> 0

ds(xA)

dxB
=

α

S ′B(pB)

ds(xB)

dxB
= −v′B(xB) +

α

S ′B(pB)
> 0

ds(xB)

dxA
=

1− α
S ′B(pB)

It is easy to check that det J > 0.

Case IV. In this case, vA(xA) > pA > vA(xB) and vB(xB) > pB > vB(xA).

dpA
dxA

= − 1− α
S ′A(pA) + α

vA′(vA−1(pA))

dpA
dxB

= 0

dpB
dxB

=
α

S ′B(pB)− 1−α
vB ′(vB−1(pB))

dpB
dxA

= 0

We find:

ds(xA)

dxA
= v′A(xA) +

1− α
S ′A(pA) + α

vA′(vA−1(pA))

> 0

ds(xA)

dxB
= 0

ds(xB)

dxB
= −v′B(xB) +

α

S ′B(pB)− 1−α
vB ′(vB−1(pB))

> 0

ds(xB)

dxA
= 0

It is easy to see that det J > 0.
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Proof of Theorem 4. We need to sign the terms of the inverse of the Jacobian matrix. Ap-
plying the implicit function theorem to S(x) = c and substituting in the known signs of the
inverse Jacobian matrix gives monotonicity.

Positive principal minors of Jacobian (14) imply that the inverse of the Jacobian matrix
is signed as follows (Cramer’s rule):

sgn(J−1) =

(
+ −
− +

)
Therefore, (

dxB
dc
dxA
dc

)
= J−1

(
−1
1

)
and so,

dxB
dc

< 0
dxA
dc

> 0.

Proof of Theorem 5. As shown in (13),

S(x;α) = (−c, c). (19)

Our goal is to find dxA/dα and dxB/dα. To this end, differentiate (19) with respect to α:

J ·
(
dxB
dα
dxA
dα

)
+
∂S

∂α
= 0, (20)

where J is given in (14). When all buyers purchase a product, s(x) = uA(x) − uB(x) =
vA(x) − pA − (vB(x) − pB). The only part that depends directly on α is the prices. Again,
When all buyers purchase a product,

SA(pA) = 1− xA + α(xA − xB)

SB(pB) = xB + (1− α)(xA − xB)

From here we find
dpA
dα

=
xA − xB
S ′A(pA)

dpB
dα

= −xA − xB
S ′B(pB)

Therefore,
∂S

∂α
=

(
∂(pB−pA)

∂α
∂(pB−pA)

∂α

)
= −(xA − xB)

(
1

S ′A(pA)
+

1

S ′B(pB)

)(
1
1

)
Plugging back to (20),(

dxB
dα
dxA
dα

)
= J−1∂S

∂α

=
1

det J

(
X1 +X3 −X3

−X4 X2 +X4

)(
1
1

)
(xA − xB)

(
1

S ′A(pA)
+

1

S ′B(pB)

)
,

24



where Xj ≥ 0, j = 1, 2, 3, 4 are defined in (15) and (17).(
dxB
dα
dxA
dα

)
=

1

det J

(
X1

X4

)
(xA − xB)

(
1

S ′A(pA)
+

1

S ′B(pB)

)
(21)

=
1

det J

(
v′A(xA)− v′B(xA)
v′A(xB)− v′B(xB)

)
(xA − xB)

(
1

S ′A(pA)
+

1

S ′B(pB)

)
. (22)

Since vA is increasing and vB is decreasing,

dxB
dα
≥ 0

dxA
dα
≥ 0

Proof. [Proof of Lemma 2] Consumer surplus is the surplus obtained in the trade phase less
the search costs.

CS =

ˆ 1

xA

uA(x)dx+

ˆ xA

xB

(αuA(x)+(1−α)uB(x))dx+

ˆ xB

0

uB(x)dx−(1−α)(1−xA)c−αxBc.

Since prices are fixed, uA and uB do not change in response to changes in xA and xB. If xA
and xB are chosen optimally to maximize the consumer surplus, then we have:

dCS

dxA
= −(1− α)uA(xA) + (1− α)c+ (1− α)uB(xA) = 0 (23)

dCS

dxB
= −αuA(xB)− (1− α)uB(xB) + uB(xB)− αc = 0 (24)

These two equations coincide with the equilibrium conditions (6).

Proof. [Proof of Theorem 7] By Lemma 2, (xB, xA) maximize the consumer surplus holding
the prices and c and α fixed. Also, since prices are fixed, uA and uB do not change in
response to changes in c.By the envelope theorem,

dCS

dc
= −(1− α)(1− xA)− αxB < 0.

Proof. [Proof of Theorem 8]
R = qApA + qBpB

By the Full Coverage assumption, when c is close to zero, all consumers still purchase a
product. We have that qA = 1− xA + α(xA − xB) and qB = xB + (1− α)(xA − xB).

dqA
dc

= −(1− α)
dxA
dc
− αdxB

dc
dqB
dc

= (1− α)
dxA
dc

+ α
dxB
dc
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Therefore,

dR

dc
=
dxA
dc

(1− α)(pB − pA) +
dxB
dc

α(pB − pA)

= (pB − pA)(
dxA
dc

(1− α) + α
dxB
dc

).

As shown in Theorem 4, dxA/dc > 0 and dxB/dc < 0. Also, in the case of fixed prices,
dxA/dc and dxB/dc are independent of α. Let good B be more expensive, pB > pA. To
maximize dR/dc, the intermediary should set α = 0, that is to set good B as the default.
Therefore, while all consumers still purchase a product, it is optimal to increase c.

Proof. [Proof of Theorem 9]
In the text after the state of the theorem, we established that when all buyers purchase

a product,

dPS =

(
pA
εA
− pB
εB

)
dqA. (25)

The rest of the discussion in the text was informal, and here we provide a rigorous version.
In price equilibrium when all buyers purchase a product,

qA = 1− xA + α(xA − xB),

from where
dqA
dc

= −(1− α)
dxA
dc
− αdxB

dc
.

Start with c = 0. We will show that there is α and a deviation to c > 0 that increases
PS. As shown in Theorem 4, dxA/dc > 0 and dxB/dc < 0. If pB

εB
− pA

εA
> 0, then set

α = 0 and increase c by a little bit. By (25), the joint seller profit increases. Conversely, if
pB
εB
− pA

εA
< 0, then set α = 1 and increase c. Therefore, the default good should be the one

with less semi-elastic supply.
Since dxA/dc and dxB/dc depend on α, the corner values of α need not be optimal,

which implies that the optimal default can be stochastic. To show that the optimal default
is deterministic, evaluate dPS/dα at corner values of α with c > 0. For concreteness, let
pB
εB

< pA
εA
, which implies that defaulting everyone into A helps to increase the profits. Can

we do better by lowering α?
dPS

dα
=

(
pA
εA
− pB
εB

)
dqA
dα

.

By Lemma 4, dqA/dα > 0 when c > 0, and so dPS/dα > 0. Therefore, α = 1 is the global
maximum. Similarly one can find that when pB

εB
> pA

εA
, dPS/dα < 0.

Proof. [Proof of Theorem 10] The net consumers surplus is the utility the consumers obtain
from buying a product, less price, less search costs:

NCS =

ˆ v̄

pA

DA(t)dt− (1− α)(1− xA)c+

ˆ v̄

pB

DB(t)dt− αxBc.
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The equilibrium thresholds (xB, xA) are as if the social planner maximized the consumer
surplus holding the prices fixed (Lemma 2). Therefore differentiating NCS with respect to
c we don’t need to take the partial derivative with respect to (xB, xA). We have:

NCS =

ˆ v̄

pA

DA(t)dt− (1− α)(1− xA)c+

ˆ v̄

pB

DB(t)dt− αxBc.

The equilibrium thresholds (xB, xA) are as if the social planner maximized the consumer
surplus holding the prices fixed (Lemma 2). Therefore differentiating NCS with respect to
c we don’t need to take the partial derivative with respect to (xB, xA). We have:

dNCS

dc
=− dpA

dc
qA −

dpB
dc

qB − (1− α)(1− xA)− αxB

=−
(
pA
εA
− pB
εB

)
dqA − (1− α)(1− xA)− αxB

=

(
pA
εA
− pB
εB

)(
(1− α)

dxA
dc

+ α
dxB
dc

)
− (1− α)(1− xA)− αxB (26)

When all consumers purchase a product, we have

pA
εA

=
qA
S ′A

=
1− xA + α(xA − xB)

S ′A
pB
εB

=
qB
S ′B

=
xB + (1− α)(xA − xB)

S ′B

Using (13) and (14), obtain that(
dxB/dc
dxA/dc

)
= J−1

(
−1
1

)
=

1

det J

(
X1 +X3 −X3

−X4 X2 +X4

)(
−1
1

)
=

1

det J

(
−X1 − 2X3

X2 + 2X4

)
.

Adopt notation h(x) = vA
′(x)− vB ′(x). Then

X1 = h(xA)

X2 = h(xB)

X3 = (1− α)(S ′−1
A + S ′−1

B )

X4 = α(S ′−1
A + S ′−1

B )

Further,

(1− α)
dxA
dc

+ α
dxB
dc

=
(1− α)h(xB)− αh(xA)

det J
(27)

det J = X1X2 +X1X4 +X2X3 =

= h(xA)h(xB) + h(xA)α(S ′−1
A + S ′−1

B ) + h(xB)(1− α)(S ′−1
A + S ′−1

B )

= h(xA)h(xB) + (h(xA)α + h(xB)(1− α))(S ′−1
A + S ′−1

B ) (28)
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Plug back all expression into (26). We have

dNCS

dc
=

(
1− xA + α(xA − xB)

S ′A
− xB + (1− α)(xA − xB)

S ′B

)
(1− α)h(xB)− αh(xA)

det J

− (1− α)(1− xA)− αxB.

Look at the numerator only, and collect terms by S ′−1
A and S ′−1

B . The multiplier on S ′−1
A

in the numerator of dNCS
dc

is:

[1− xA + α(xA − xB)] [(1− α)h(xB)− αh(xA)]

− [(1− α)(1− xA) + αxB] [h(xA)α + h(xB)(1− α)]

= h(xA)α [− (1− xA + α(xA − xB))− [(1− α)(1− xA) + αxB]]

+h(xB)(1− α) [1− xA + α(xA − xB)− [(1− α)(1− xA) + αxB]]

= h(xA)α [− (1− xA + αxA)− [(1− α)(1− xA)]]

+h(xB)(1− α) [1 + α(−xB)− [(1− α) + αxB]]

= h(xA)α [−2 + α + (2− 2α)xA] + h(xB)(1− α) [α− 2αxB] < 0.

The multiplier on S ′−1
B in the numerator of dNCS

dc
is:

− [xB + (1− α)(xA − xB)] [(1− α)h(xB)− αh(xA)]

− [(1− α)(1− xA) + αxB] [h(xA)α + h(xB)(1− α)]

= h(xA)α [xB + (1− α)(xA − xB)− [(1− α)(1− xA) + αxB]]

+h(xB)(1− α) [− [xB + (1− α)(xA − xB)]− [(1− α)(1− xA) + αxB]]

= h(xA)α [−1 + α + (2− 2α)xA] + h(xB)(1− α) [−1 + α− 2αxB] < 0.

The remaining free term in the numerator of dNCS
dc

is:

−h(xA)h(xB)((1− α)xA + αxB) < 0.

Therefore,
dNCS

dc
< 0.

Lemma 3. Let R = RA +RB be joint seller revenue, where Rj = pjqj. Then for c when all
consumers buy a product,

dR

dc
=

(
pB

1 + εSB
εSB

− pA
1 + εSA
εSA

)(
(1− α)

dxA
dc

+ α
dxB
dc

)
(29)

Proof.
RA = pASA(pA)

dRA

dc
=
dpA
dc

qA + S ′A(pA)
dpA
dc

pA

=
dpA
dc

qA(1 + εSA).

Plug in the expression for dpA
dc

from (??), and obtain the result.
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Lemma 4. Suppose c > 0. Then

dqA/dα =
(vA

′(xB)− vB ′(xB))(vA
′(xA)− vB ′(xA))

det J
(xA − xB) > 0.

Proof. When all buyers purchase a product,

qA = 1− xA + α(xA − xB).

dqA
dα

= −(1− α)
dxA
dα
− αdxB

dα
+ xA − xB.

Using (22),

dqA
dα

= −(xA − xB)(S ′−1
A + S ′−1

B )

det J
((1− α)h(xB) + αh(xA)) + xA − xB,

where h(x) = vA
′(x)− vB ′(x). Plug in the expression for det J from (28):

det J

xA − xB
dqA
dα

= −(S ′−1
A + S ′−1

B )((1− α)h(xB) + αh(xA)) + h(xA)h(xB)

+ (h(xA)α + h(xB)(1− α))(S ′−1
A + S ′−1

B )

= h(xA)h(xB).

When c > 0, we have that xA > xB.
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