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Abstract

We study demand estimation in a large auction market. In our model, a dynami-

cally evolving population of buyers with unit demand and heterogeneous and privately

known preferences for a finite set of differentiated products compete in a sequence of

auctions that occur in discrete time. We define an empirically tractable equilibrium

concept in which bidders behave as though they are competing with the stationary dis-

tribution of opposing bids, characterize bidding strategies, and prove existence of equi-

librium. Having developed this demand system, we prove that it is non-parametrically

identified from panel data. We extend the model to consider a random coefficients de-

mand system akin to workhorse demand models in industrial organization, and show

that this too is non-parametrically identified. We apply the model to estimate demand

and show how large sellers can exercise market power by using persistent reserve price

policies, which induce higher bids and therefore revenues. Our analysis highlights the

importance of both dynamic bidding strategies and panel data sample selection issues

when analyzing these markets.
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1 Introduction

Most goods and services are sold at fixed prices. Yet auctions are used as the allocation

mechanism in a wide variety of contexts, including procurement contracts, treasury bills and

the granting of oil drilling and spectrum rights. Technology companies such as Facebook,

Google and Microsoft sell advertisers access to online consumers through display and search

advertising auctions. And though the majority of eBay’s revenue now comes from fixed price

listings of new goods, they still sell a large number of goods (both in absolute and dollar

terms) by auction.

These markets share many common features. Buyers get multiple purchase opportunities

over time, either for exactly the same product (e.g. a keyword in online search advertising),

or for close substitutes (e.g. in treasury bill auctions). This allows bidders to intertempo-

rally substitute, making participation and bidding decisions in light of the option value of

waiting for future purchasing opportunities. Both bids and participation choices will reflect

individual-specific preferences over the heterogeneous products available. For example, in

highway procurement, Lewis and Bajari (2011) document matching between contractors and

contract based primarily on distance and contract size, while in online labor markets, employ-

ers are more likely to award contracts to workers from their own country (Krasnokutskaya

et al., 2016).

In the fixed price context, an influential discrete choice demand estimation approach has

been developed that models how buyers with unit demand and heterogeneous preferences

over item characteristics make purchasing decisions (Boyd and Mellman, 1980; Cardell and

Dunbar, 1980; Berry, 1994; Berry et al., 1995).1 However with the important exception

of Jofre-Bonet and Pesendorfer (2003), there has been no analogous work in the empirical

auctions literature, which typically considers the identification and econometric analysis of

a repeated cross-section of observations of a static auction game with a single product. The

goal of this paper is fill this gap.

Specifically, we consider a large-market model of repeated second-price auctions of differ-

entiated products. Buyers have unit demand and heterogeneous, perfectly persistent and

privately known multidimensional valuations (which may be formulated as latent random

1Goettler and Gordon (2011) and Gowrisankaran and Rysman (2012) extend these models to consider
cases where consumers purchase repeatedly over time, and must form beliefs about future product offerings.
By contrast we fix the set of products and impose unit demand in the present paper, as in the older literature.

1



coefficients over item characteristics). Their optimal bidding strategy is to shade their bids

below their valuations to account for the option value of staying in the market and possibly

purchasing a better good or the same good at a lower price in the future. We prove the

existence of a dynamic equilibrium, and show non-parametric identification of the model.

We then apply these results in estimating the demand for compact cameras on eBay.

There are three technical roadblocks we overcome. The first is that allowing for persistent

privately known preferences in a dynamic auction game introduces private monitoring, with

all its attendant game theoretic complications. We surmount this using a large market

equilibrium concept, defining an equilibrium as a symmetric bidding function and set of

beliefs about the distribution of rival bids such that the bidding function is optimal given

those beliefs, and the beliefs are consistent with the ergodic distribution of equilibrium play.2

The second is a selection problem. Recall that we want to learn the distribution of the vector

of valuations of bidders for the goods in the market. Even if bidders bid their valuations—

and they don’t—it would still be hard to learn the distribution of valuations, because most

of them will exit, either randomly or by winning an auction, well before bidding on every

available product and thereby revealing their valuations. Moreover, auction winners are

disproportionately those with high valuations, which introduces a selection problem. We

show that we can re-weight the observed distribution of these different types of bidders to

learn their “bid-type”: their preferred bid vectors.

The final piece of the puzzle is learning an inversion from bid-types to valuations. A useful

insight is that a bidder with a given valuation vector faces a Markov decision problem (MDP)

when deciding how much to bid on each product, where the payoff functions and transition

matrices are observed. We show that the MDP can be inverted: if we know a bidder’s bid-

type—their optimal bid on each product—we can invert it to get their underlying type, or

valuation.3 By combining this inversion with the selection correction, we can identify the

distribution of valuations.

A subsequent theorem proves non-parametric identification for a random coefficients demand

2This is similar to ideas elsewhere in the literature, such as the model of belief formation in Krusell
and Smith (1998) and the oblivious (mean-field) equilibrium concept of Weintraub et al. (2008) and Iyer
et al. (2014). Many other papers in the dynamic games estimation literature have instead assumed that
everything persistent is commonly known, but this is counter to the spirit of our project (for examples, see
e.g. Jofre-Bonet and Pesendorfer (2003), Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al.
(2007); Fershtman and Pakes (2012) is a recent exception.)

3A similar argument was made in Jofre-Bonet and Pesendorfer (2003) and subsequently in many of the
papers cited in the literature review below.
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system, paralleling the workhorse demand model in industrial organization, where the utility

function combines latent and persistent random preferences over product characteristics,

transient unobserved heterogeneity draws that are common to bidders in an auction, and

transient idiosyncratic preference shocks for individual bidders. This theorem makes use of

a novel deconvolution argument based on repeated observations of the same bidder’s bids in

successive auctions.

Our setup endeavors to situate auctions in a marketplace, with opportunities for substitution

that are often missing in the auctions literature. However, in reality, substitution is much

richer than any one model will capture: it happens through search; it happens as bidders

choose which of concurrent auctions to enter, and it also happens intertemporally, as bidders

eye future opportunities. We have deliberately chosen to focus on the latter channel. In

our setting, a bidder with a preference for a particular type of product will shade their

bid aggressively until it is auctioned, effectively substituting inter-temporally rather than

through search or entry. This loads substitution into the continuation value, which we show

to be quite tractable for empirical modeling.

The final part of the paper is an application of our framework to data from eBay’s compact

camera market. We model preferences as a linear combination of a random taste for a camera

and a random taste for camera resolution, and estimate the distribution of these random

coefficients. Our estimation approach uses only the first-and-second highest bids in each

auction, as it is hard to know how to interpret other bids. We are able to accommodate this

data limitation by modifying our selection correction argument, so that the censoring of bids

that were neither first nor second highest is explicitly accounted for, which illustrates the

flexibility of our approach. Despite this, we get statistically precise estimates of demand,

and match out-of-sample moments of the bid distribution dataset quite well.

We use these results to consider how a large seller, controlling approximately one third of

listings, might exercise market power in an auction marketplace. By committing to a persis-

tent reserve price policy (i.e. one that applies to all listings from this seller, versus a transient

reserve, which is implemented in only one auction), the seller can reduce buyers’ continua-

tion values, which translates into more aggressive bidding and higher revenue. Simulation

using our demand estimates shows that this effect can be quite large. When the seller’s costs

are 90% of the expected sale price under no reserves they are able to use optimal persistent

reserves to raise profits by as much as 42%, versus 34% under a transient reserve. This dif-

ference stems from the market power of the seller, and will grow as their market share—and
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therefore their ability to depress bidders’ continuation values—does.

Literature Review. Jofre-Bonet and Pesendorfer (2003) was the first paper to attack

estimation in a dynamic auction game in the context of sequential procurement auctions.

Subsequent to this, a number of papers have looked at dynamics on the eBay platform specif-

ically. Zeithammer (2006) developed a model with forward-looking bidders, and showed both

theoretically and empirically that bidders shade down current bids in response to the presence

of upcoming auctions of similar objects. Sailer (2006) estimates participation costs for bid-

ders facing an infinite sequence of identical auctions (see also Groeger (2014) for a dynamic

model with participation costs in a procurement environment). Nekipelov (2007) analyzes

a model where bidders attempt to prevent learning by late bidding. Ingster (2009) develops

a dynamic model of auctions of identical objects, and provides equilibrium characterization

and identification results. Finally, Ridinger (2020) incorporates resale and aggregate shocks

into a dynamic model that is applied to the market for classic cars.

The original version of our paper, Backus and Lewis (2010), introduced a dynamic auction

model with latent, persistent and high-dimensional types, and showed that under certain

restrictions on player beliefs, equilibrium existence and non-parametric identification could

be proved. Subsequently, there have been two other notable papers about dynamic auction

markets, and eBay specifically. Bodoh-Creed et al. (2017) estimate demand for Kindles,

and then simulate an alternative market design where half as many 2-unit auctions were run

instead, finding that this would increase efficiency but lower seller revenues. Their model uses

the same “large market” belief approximations as our original paper, but they go further by

employing a continuum approximation with an infinite number of bidders and products that

they show behaves similarly to the finite game and has certain computational advantages.

They also allow for participation costs and endogenous entry. Hendricks and Sorensen (2014)

keep the finite bidder model and “large market beliefs”, but do the analysis in continuous

time, and again allow for selective entry: bidders pick which of an upcoming set of available

auctions to participate in, depending on the current state (e.g. current posted bids in these

auctions). They use their estimates to understand how well the marketplace works relative to

a fully efficient competitive benchmark. The main difference between these papers and ours

is that their models are of homogeneous goods and focus on efficiency and market design,

whereas we have heterogeneous objects and are interested in substitution between products.4

4Other papers tackle related issues in a static setting. Gentry and Li (2014) and Adams (2012) offered
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2 The Demand System in Context

We begin the paper with a brief review of the relevant portion of the empirical auctions

literature and how it relates to similar work on fixed price markets. The starting point of

this literature is a model where the payoff of a winning bidder takes the form:

ui = εi.

Specifically, short-lived agents i draw independently and identically distributed (iid) real-

valued valuations εi from some distribution F , and participate in some auction mechanism

to win the goods (see e.g. the work of Guerre et al. (2000) on first-price auctions). The

econometrician observes a repeated cross-section of bids from this mechanism and wants to

learn F . Subsequent elaborations of this work included treatments of non-iid and asymmetric

valuation distributions, incomplete data and other auction mechanisms (see Athey and Haile

(2007) for a discussion of identification in these models).

Maintaining the static auction environment, but adding multiple distinct items with char-

acteristics that are valued equally by all participants yields a utility function of the form:

uij = α′zj + εij

where items are indexed by j, zj is a vector of item characteristics and α is an unknown

parameter vector. Haile et al. (2006) demonstrate how to estimate the α in a first-stage

“normalization” step prior to learning the distribution F . Notice the resemblance to the

utility function assumed in a standard multinomial logit.

Moving to a dynamic context in which a fixed set of long-lived bidders repeatedly interact

over an infinite horizon, Jofre-Bonet and Pesendorfer (2003) (JBP) consider a more general

model in which the per-period payoff of winning bidders uijt is sampled iid from a conditional

distribution F |st, where the state variable st can include item characteristics zj, individual

characteristics αi and even the characteristics of rival bidders α−i (in their application to

highway procurement, zj are the contract size and duration, and αi and α−i are the size and

analyses of non-parametric identification in models of costly endogenous buyer entry and optimal entry with
multiple competing auctions, respectively, while Marra (2018) models both buyer and seller entry in order
to study fee–setting on two–sided auction platforms. And while we focus on heterogeneity in preferences on
the buyer side, Krasnokutskaya et al. (2014) consider a world with heterogeneous preferences on the seller
side.
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backlog of existing projects by that bidder and rival bidders respectively). The full state

vector st is assumed to be known to the econometrician. An illustrative special case of the

model is an index model with preferences over item characteristics that vary with bidder

observables:

uijt = α′(wi × zj) + εit

where wi is a column-vector of observable bidder characteristics, zj is a column-vector of

observable item characteristics, wi × zj is notation for the column-vector consisting of all

pairwise interactions of wi and zj (equivalently a flattened version of the outer product),

α is an unknown parameter vector and εit has unknown distribution F . Again, notice the

resemblance to a multinomial logit demand system.

In the current paper, we study a dynamic equilibrium in the still more general case of random

coefficients, developed by Boyd and Mellman (1980) and Cardell and Dunbar (1980), and

well-known in the IO literature due to the work of Berry et al. (1995):

uijt = αizj + ξt + εit

where now αi is a person-specific, perfectly persistent and latent random variable with dimen-

sion equal to the number of product characteristics (“bidder type”), ξt is an auction-specific

transitory valuation shock and εit is an idiosyncratic valuation shock. The goal becomes to

learn the distributions of αi, ξt and εit. We also consider a less heavily parameterized version

of the model in which consumers draw iid valuations xi ∈ RJ—a real-valued valuation for

each kind of product—and the goal is to learn the distribution of such valuations F .

The main difference between our model and JBP is that we allow for a multidimensional,

persistent and latent state vector consisting of the bidder types. So for example we can

allow for persistent productivity differences between highway construction firms that cannot

be perfectly explained by observables such as the current portfolio of projects and project

backlog. In our application to eBay, because we allow for persistent latent types, we can

model consumer preferences as stable. A smaller difference is that we also allow for correlated

taste shocks within an auction, through the unobserved heterogeneity term ξt. This is

specifically ruled out in JBP. A third difference is that we assume the state is not commonly

known by either the bidders or the econometrician (i.e. the bidders do not know each other’s

valuations). So whereas in JBP bidders know the distribution of competing types, in our

model that requires sophisticated inference, creating game theoretic complications that we
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circumvent by the use of large market arguments. The next section presents the formal

model and these arguments.

3 Model and Equilibrium Analysis

We consider a market in which competing products are sold by second-price sealed bid

auctions. These auctions are held in discrete time, with either zero or one good auctioned

per period over an infinite horizon. Since our focus is on demand, we assume for simplicity

that supply is random and exogenous. Bidders have unit demand, and enter the market with

private and perfectly persistent valuations for each of the objects. They are inattentive, and

are active and bid in any particular period with constant probability. We show that they

bid their valuation less their continuation value, and assume they assess the latter based on

the steady-state distribution of supply and competing bids, rather than on current market

conditions (e.g. the number of competing bidders in the current auction). Winning bidders

exit the market with certainty, while losing bidders exit with constant probability.

We have chosen this set of assumptions to match some features of the market for digital

cameras on eBay, which is our empirical application. In any eBay category (such as digital

cameras), there are many different products sold by auction to a large number of anonymous

buyers. Although these auctions typically last for many days, and thus overlap—so that

at any given point in time there are many auctions occurring simultaneously—they finish

at different ending times, in sequence. As Bajari and Hortaçsu (2004) and Hendricks and

Porter (2007) have noted, this timing, combined with the way the proxy bidding system

works, imply that eBay is reasonably well approximated by sequence of second-price sealed

bid auctions.

3.1 Environment

We formalize the above description of the environment in what follows:

Supply. There are J distinct kinds of goods sold in a market, indexed by j = 1 . . . J . We

denote the set of products by J . In each period t, a good may be available for purchase.

Supply is exogenous and Markov, with the current product jt drawn from a stationary
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multinomial distribution conditional on the lagged product jt−1. We allow for the possibility

that no product is available in a given period, and so supply can be summarized by a square

transition matrix Q of size J + 1× J + 1, where the entry Qj,k gives the probability product

k will be supplied next when j is currently offered (and the last row and column give the

cases where no product is offered now and will be offered later, respectively). We assume

moreover that the multinomials have full support, so that regardless of what was supplied

at t− 1, it is possible that any of the J products (or nothing) is supplied at t. When a good

is available, it is sold by second-price sealed-bid auction.

Demand. At the beginning of each period, Et buyers enter the market, where Et is sampled

independently over time from a Poisson distribution with mean λ. Each buyer has unit

demand, and has a perfectly persistent value for each of the goods summarized by a privately

known vector of valuations x = (x1, x2 · · ·xJ) ∈ RJ . This value is drawn iid across buyers on

entry according to a distribution F with strictly positive density over its support X = [0, x]J .

The new entrants combine with the population of buyers from previous periods to form a

cohort of bidders of size Nt.
5

New entrants are always active; the remaining incumbent members of the cohort are active

in each period with iid chance τ . Active buyers participate in the current auction (if one is

held), observing the product currently under auction, and placing bid b ∈ R.6 Notice that

we allow for negative bids. This plays an important simplifying role in the identification

arguments below—since otherwise we would have to deal with censored data—but is not

important for the theory presented in this section.7 Agents are risk-neutral and have quasi-

linear utility, receiving a total payoff of xj − p for buying a good j at price p, and zero

otherwise. If an auction is held and a bidder wins the auction, they exit the market. All

other active bidders exit with probability (1−r) (i.e. r ∈ (0, 1) is the survival rate). Inactive

bidders do not exit. We assume that agents do not discount future payoffs, although the

exogenous exit probability is functionally equivalent to exponential discounting.8

5For the proof of Lemma 6, we also need to assume that there exists some arbitrarily large maximum
number of buyers N such that when Nt = N , no-one enters (Et = 0). This is a purely technical condition
required for compactness of the state space.

6Note that this rules out an explicit model of search, where buyers endogenously choose which of an
upcoming sequence of auctions to bid in. This is a limitation of the model. See Hendricks and Sorensen
(2014) for a way to account for this.

7If bids must be positive, bidders will simply not participate whenever their desired bid is negative. Their
continuation values must be adjusted accordingly.

8For this reason the agents’ time preferences are not separately identified in this setting.
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3.2 Beliefs and Strategies

We begin our analysis by looking at the buyer’s beliefs. In our application to the compact

camera market on eBay, it seems reasonable to assume that buyers have simple models of

the competition they face. We formalize this idea by assuming that bidders believe that the

distribution of the highest competing bid is equal to the historical average and best respond

accordingly.9 Let B1
j be a random variable denoting the highest bid in an auction for good

j, and let G1
j be its cumulative distribution function.

Assumption 1 (Beliefs About Competing Bids). Following any history of play, bidders

believe that the highest rival bid in an auction for good j has distribution G1
j .

These are rational beliefs to hold: an uninformed bidder, entering a stationary market, should

expect the distribution of competing bids to look like the historical distribution of bids. This

is because their own entry into the market is random and thus uninformative as to the current

state, which means the distribution of rival bids and historical bids coincide.10 What the

assumption rules out is signaling and learning, e.g. that bidders are more sophisticated,

updating their beliefs based either on their own experience after entering the market or

from publicly available state variables such as the sequence of upcoming auctions.11 Bidders

are “oblivious” in the sense of Weintraub et al. (2008) (though their oblivious equilibrium

concept applies only to games of complete information).

We make this modeling choice to simplify the game theory, but it is also attractive as a

model of bidder behavior. Being fully rational and conditioning on all available information

is presumably costly, and the gains are small. This is because under repeated second-price

auctions, the optimal bid today depends on the current state of the market only to the extent

that it predicts future competition (the payoff on losing), and the market turns over quickly

enough that the current state is not particularly informative. At the end of this section, we

9Some version of this assumption is made throughout the related literature (Ingster, 2009; Bodoh-Creed
et al., 2013; Hendricks and Sorensen, 2014).

10Contrast this with a repeated static auction model with N bidders drawing iid valuations; then the
historical highest bid distribution G1 is the maximum of N bids, whereas the highest rival bid distribution
is the maximum of N − 1 bids. When the number of bidders is fixed, the fact that a bidder is in the auction
is informative: it means that only N − 1 people are competing with them. Here there is no fixed number of
bidders and the bidder’s presence does not inform their beliefs about G1.

11A bidder who lost yesterday might reason that competition was fierce yesterday, and may still be so
today. This gives rise to a winner’s curse effect (Budish, 2008). There is some evidence that this kind of
learning occurs on eBay: Coey et al. (2015) show that bidders tend to (modestly) increase their bids in
subsequent auctions for the same product, although they attribute this to deadlines rather than learning.
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outline an extension that allows bidders to condition on other public state variables.

Under this assumption, the only payoff relevant-information at time t is the bidder’s type

and the current object under auction, jt. So without loss of generality a pure strategy is

just a vector β : X → RJ , a bid on each product as a function of type, with jth coordinate

βj. In the paper, given the number of agents typically seen on eBay, we choose to restrict

attention to symmetric strategies.

3.3 Equilibrium

In an equilibrium of this market, bidders will play optimally given their beliefs about the

competition they face. Those beliefs are informed by the long-run distribution of competing

bids. So in order to make progress in defining an equilibrium, we need to talk about the

long-run evolution of the market.

The environment evolves as a first-order Markov process. To see this, let the state ωt be a

real-valued vector of dimension N + 1, consisting of first the product-type to be auctioned

that period (−1 if no product is available that period), then the valuations of the incumbent

bidders in the next Nt positions (including bidders who have just entered) and −1 entries

in the rest of the positions. Then next period’s state depends on who wins and who loses

(a function of the current state and strategies β, as well as who is active that period),

which losers survive, what product is sold next period and the number and valuations of

new entrants. Let T (µ, β) be a transition operator that takes a distribution µ over current

states ω into distributions over the next period’s distribution of states ω′. Then for each β,

a corresponding erdogic measure is a fixed point: µ = T (µ, β).

Using this language, we can define an equilibrium:

Definition 1 (Equilibrium). A pure strategy equilibrium is a tuple (βe, {G1
j}, µβ

e
) such

that

(Optimality) βe(x) is a best response for type x given beliefs {G1
j(b)}j∈J ;

(Ergodicity) µβ
e

is the unique fixed point of the transition operator T (µ, βe), and

(Consistency) G1
j(b) =

∫
1
(
B1
j (ω) ≤ b

)
dµβ

e
(ω|j), where µβ

e
(·|j) is the conditional equi-

librium ergodic measure given that product j is being auctioned.
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The definition mirrors the requirements for a Bayes–Nash equilibrium: play must be optimal

given beliefs, and beliefs must be consistent with play. The twist is that here we link strategies

to beliefs through the ergodic measure µβ
e
. The ergodicity requirement defines µβ

e
to be the

unique fixed point of the transition operator when the strategies are βe, i.e., what will happen

in the long-run if βe is played. The consistency requirement says that beliefs about competing

bids, as specified by Assumption 1, must be consistent with the equilibrium ergodic measure.

Notice that the uniqueness requirement on the ergodic measure is necessary otherwise beliefs

are not well-defined.

3.4 Best Responses

We find best responses through solving the buyer’s decision problem. This problem is dy-

namic, since losers may have an opportunity to bid at a later date. Each buyer of type x must

solve a dynamic program where the state is the product–type currently being auctioned, since

Assumption 1 implies that this is sufficient for beliefs about the highest competing bid (which

together with the bid determines allocations and payments). Since the state is Markov, the

buyer faces a Markov decision problem (MDP).

Define the state transition matrix Q̃ ≡
∑∞

s=1 τ(1 − τ)s−1Qs. This is the distribution over

products a bidder bidding on j today expects to see, determined by Qs when they are next

active, as determined by τ . Let vj(x) be the perceived continuation value of a bidder of type

x who is active and bidding on product j. Then we can write down a Bellman equation:

vj(x) = max
b∈R+

∫ (
1(b ≥ B1

j )(xj −B1
j ) + 1(b < B1

j )r
∑
k

Q̃j,kvk(x)

)
dG1

j(B
1
j ). (1)

The first term in the integral represents the case where the bidder submits the largest nonzero

bid, winning the auction and obtaining surplus equal to current valuation less a payment

given by the second-highest bid (potentially zero). The second term represents the case where

the bidder loses and survives to bid another day, obtaining their continuation value for the

next period in which they will be active. These events are determined by the realization

of the highest competing bid, which by Assumption 1, the bidder believes to be distributed

according to G1
j . Solving the above maximization problem, we get:

Lemma 1 (Best Responses). Suppose that beliefs satisfy Assumption 1. Then bidding
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valuation less discounted continuation value is a best response:

βj(x) = xj − r
∑
k

Q̃j,kvk(x), (2)

where the dependence on the distributions {G1
j} is through the continuation value. When

G1
j is supported on the interval [0, b̄j] (i.e., has no gaps), βj(x) is the unique best response.

Moreover, βj(x) is continuous, strictly increasing in xj and decreasing in xk for k 6= j.

Because this is a second-price auction, bidders bid to be indifferent between marginally

winning and losing. Winners who marginally win receive the difference between their value

and their bid, while losers receive their continuation value (discounted to account for the

possibility of exit). Equating these, bids must be equal to value less continuation value. This

optimal bid might sometimes be negative, indicating that a bidder would optimally wait for

another product rather than win the current product at a positive price.12

The characterization in (2) is implicit—i.e., vj(x) is defined recursively according to the

Bellman equation in (1). But since the state space of the MDP is discrete, and the total

value of the game for x is upper bounded by the maximum valuation maxj xj (a bidder’s

payoff if they win and pay zero, exiting the market), the MDP has a solution and a unique

value function (Blackwell, 1965). Since optimal bids are given by valuations less continuation

values, the uniqueness of the value function implies the uniqueness of βj(x) whenever G1
j is

supported on an interval.13 Monotonicity is a natural property: if a bidder values object

j more, they optimally increase their bid for it, and correspondingly shade their bids on

substitute objects down.

3.5 Existence

To tie up this model, we state the first main result of the paper, an existence theorem:

12Similar equations appear in many other papers. As Budish (2008), Said (2009) and Zeithammer (2009)
all note, this bid characterization is not correct in Bayes-Nash equilibrium, due to a winner’s curse effect:
on winning, a bidder learns that the remaining types had lower valuations, and therefore regrets winning
now rather than later at a lower price. This effect disappears when private valuation shocks are transient
(e.g. Jofre-Bonet and Pesendorfer (2003)) or under large market assumptions on beliefs (our Assumption 2
or those made in Iyer et al. (2014), Hendricks and Sorensen (2014) and Bodoh-Creed et al. (2017)).

13The requirement on G1
j is used to rule out the possibility of an interval [b, b′] on which rival bids are

unsupported, since in that case if the putatively unique best response falls in this range, any other bid in
the range will also be a best response.
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Theorem 1 (Existence). A pure strategy equilibrium exists in which bidders bid according

to βj(x) as defined in Lemma 1. When J = 1, the equilibrium is almost everywhere unique.

To prove the result, we first establish in a lemma that for any symmetric strategy β, a

corresponding unique ergodic measure exists. The existence of an ergodic measure follows

from compactness of the state space: there are a finite number of players, all with bounded

valuations, and a finite set of products to be sold. Uniqueness follows by showing that

all states communicate with one another, ruling out the possibility that the initial state

determines the ergodic measure.

Next we consider the single product environment. When there is only one good, the types are

totally ordered by their value for that good. Since equilibrium bids must be strictly increasing

in valuations (see Lemma 1), all equilibrium strategies generate the same set of winners and

losers each period (the highest active type wins, the other active bidders lose), and hence

the same ergodic distribution of types. This implies (via the consistency requirement) that

equilibrium beliefs about opposing types are invariant to the strategy. This simplifies the

analysis considerably, allowing us to prove uniqueness via a contraction-mapping argument.

In higher dimensions though, different strategies β may lead to different ergodic measures.

We must show that there exist equilibrium strategies βe that are a best response given

beliefs {G1
j} that are consistent with the ergodic measure µβ

e
. We prove this by applying

Schauder’s fixed point theorem on the space of continuous functions on the type space. The

proof proceeds by showing that the set of best responses to any continuous bidding function

is uniformly equicontinuous and bounded (a compactness condition), and that the best

response varies smoothly with the bidding function (a continuity condition). To establish

continuity, we prove in Lemma 7 in the appendix that the ergodic measure is continuous in

the strategies, so that beliefs and best responses are continuous too.

3.6 Extension: State-contingent beliefs and valuations

Up to now, we have assumed that bidders have private perfectly persistent valuations, and

treat the distribution of opposing bids as fixed. We would like to allow for a more flexible

demand system that incorporates random coefficients, unobserved heterogeneity and idiosyn-

cratic shocks, as in Berry et al. (1995). We would also like to allow for the possibility that

bidders condition on some publicly observable state variables—e.g. the number of upcoming
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auctions on a given product in the next hour—when forming beliefs about rival bids.

We formalize this by enriching the state space. Assume that in each period, a state variable

s ∈ S is publicly observed. This state variable may affect bidder valuations, so we model a

bidder’s valuation as a deterministic function x(s) of the random state s. Exactly how s is

sampled will depend on the specifics of the model. For example, in the original model, the

state variable is the product-type under auction (i.e. s ∈ J ). When s = j, their value is xj.

The state variable may also affect beliefs about competing bids, so we modify Assumption 1

accordingly:

Assumption 2 (Beliefs with Public States). When the public state is s, bidders believe

(i) that the highest rival bid in the current auction has distribution G1(·|s) and (ii) will

transition according to the exogenous Markov transition kernel P (s′|s).

For example, bidders may believe that when there are many upcoming auctions for a given

good, the highest competing bid will be lower.

Definition 2 (Equilibrium with Public States). A pure strategy equilibrium is a tuple

(βe(x(s), s), {G1(·|s)}s∈S, µβ
e
) such that

(Optimality) βe(x) is a best response in state s for type x(s) given beliefs G1(b|s) ∀s ∈ S;

(Ergodicity) µβ
e

is the unique fixed point of the transition operator T (µ, βe), and

(Consistency) G1(b|s) =
∫

1 (B1(ω) ≤ b) dµβ
e
(ω|s) where µβ

e
(·|s) is the conditional equi-

librium ergodic measure given the state is s.

Then by the same logic that we offered for Lemma 1, it is optimal for bidders to bid their

state-contingent valuation less their discounted continuation value conditional on the current

state, and we obtain:

Lemma 2 (Best responses with Public States). Suppose that beliefs satisfy Assumption

2. Then the best response function β(x(s), s) satisfies:

β(x(s), s) = x(s)− r
∫
v(s′)dP (s′|s) (3)

where v(s) is the value function, defined according to the Bellman equation:

v(x(s), s) = max
b∈R+

G1(b|s)(x(s)−E[B1|B1 < b, s])+r(1−G1(b|s))
∫
v(x(s′), s′)dP (s′|s). (4)
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4 Identification

We now turn to non-parametric identification of this dynamic auction model, allowing for

persistent private types, listing-specific and idiosyncratic shocks. We assume throughout

this section that a single equilibrium is played by the bidders. The data takes the form of a

panel, consisting of all bids and the products they bid on from every bidder who was active in

the market. Each individual bidder time series will have gaps, corresponding to auctions in

which they did not participate because they were not active in that period. The time series

will also be of different lengths, since bidders will exit at different times. There are random

and non-random reasons for exit: winners are likely to be types with high valuations, but

among losers, exit is at random.

In the absence of additional shocks, each bidder has a persistent optimal bid for each good

that we call their bid-type. We show that there is an inversion from bid-types to valuations,

building on an argument first presented in Jofre-Bonet and Pesendorfer (2003). But only

bidder time series that contain a bid on every product—“complete” bidder time series—can

be inverted in this way, and due to endogenous exit the sample of complete bid vectors is

selected. An important part of our identification argument is correcting for this selection. We

present these inversion and selection correction steps initially through a two good example.

The following subsection generalizes to the case with item-specific observables and item-

specific and idiosyncratic latent shocks. Since the persistent bid-types are no longer directly

observed in the data (because of the shocks), we cannot invert pointwise from bids to val-

uations. Instead we work with distributions, showing that the distribution of complete bid

vectors is a convolution of the distribution of bid types with the various shock distributions.

A combination of deconvolution, selection correction, and inversion arguments suffices for

identification.

4.1 Identification with two goods

There are two goods. The econometrician has access to a panel dataset with all bids placed

and the type of good auctioned in each period. The generic steps of the identification

argument are:

Step 1: Identifying Q, λ, r, τ
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Identification of Q is immediate, as the econometrician sees the sequence of products up for

auction. Next, since the entry distribution is Poisson, λ is just the mean number of entrants

each period. The survival rate r is identified by the probability that the a bidder ever returns

to the market following a loss:

r = P(bidder i is observed in any period > t|bidder i bid and lost in period t). (5)

Moreover, the probability that a bidder bids in the very next auction after losing is:

rτ = P(bidder i is observed in period t + 1|bidder i bid and lost in period t). (6)

From this pair of equations one can solve for the activity rate τ .

Step 2: Inversion

Next, we want to infer the type vectors x = (x1, x2) from the bid-vectors b = (b1, b2). We

will call these bid vectors b bid-types and denote their distribution by F̃ with density f̃ .

Mathematically, this is the distribution obtained by applying the bid function β to each

type x pointwise. Define the matrix Q̃ =
∑∞

s=1 τ(1− τ)s−1Qs. For a currently active bidder

facing good j, row j of this matrix gives the probability distribution over the good that will

be supplied the next time they are active.14 In this example, Q̃ is a 2 × 2 matrix with all

entries equal to 1/2 since supply is independent across periods.

Next, define the function ζ : RJ → RJ as

ζ(b) ≡ b + rQ̃(I − rQ̃)−1G1(b)
(
b− E[B1|B1 < b]

)
. (7)

This function ζ is the inverse bidding function. Optimal bids are valuations less continuation

values (Lemma 1), and so valuations are bid-types plus continuation values. The second term

on the RHS of (7) is the continuation value. As we prove later, it is equal to the stream of

payments from a set of J annuities, where the jth pays G1
j(bj)(bj−E[B1

j |B1
j < bj]) whenever

j is auctioned. The value of this stream of payments is the sum of a geometric series, and

the pre-multiplication by rQ̃(I − rQ̃)−1 yields the continuation value.

The function ζ(b) can be constructed from the observable data, since the distributions of

highest bids for each products {G1
j}j∈J are observed. So if we can measure the distribution

14The formula follows by taking a weighted average of the probability distribution over goods supplied at
various horizons s, and multiplying by the probability of being first active at that horizon τ(1− τ)s−1.
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Good 1 Good 2

Exited

q̃11r1(b) q̃22r2(b)

(1− r1(b))

q̃12r1(b)

q̃21r2(b)

(1− r2(b))

Figure 1: Bidder Path as a Markov Chain.The bidder starts by bidding on either good 1 or good 2,
uniformly at random. From there they can either exit, bid on the same product again, or bid on the other
product.

of bid-types F̃, we can recover the primitive distribution of types F from:

F (x) = PF̃({b : ζ(b) ≤ x}). (8)

Step 3: Correcting for Selection

We want to measure the distribution of bid-types F̃. But our data consists of individual

bidder time series, and only some of them will be complete, by which we mean that they

include a bid on both products. A complete bid series may have many entries, but only two

will be distinct: a bid on product 1 and a bid on product 2. Collapse each complete bid

series to this 2-vector, and let the joint density of these vectors in our dataset be g(b), and

the joint density of bid-types be f̃(b). We have a selection problem: g(b) 6= f̃(b).

To see this, let s(b) be a function that gives the probability that a particular bid-type will

be observed bidding on both products. To calculate this selection probability, notice that

we can view a bidder’s path on the platform as a Markov chain. Figure 1 illustrates this

Markov chain. A bidder starts off either by bidding on good 1 or good 2. With probability

rj(b) = (1 − G1
j(bj))r they do not exit following the auction (i.e. does not win and then

survives). If they don’t exit, the probabilities they bid on each of the goods when next active

are given by the entries q̃ij of the Q̃ matrix defined earlier. This illustration assumes that

the probability of winning for any particular bidder is G1
j(bj), independent of the bidder’s

past bids and losses, i.e., that bidders are small relative to the market. This assumption

isn’t necessary for identification, as we argue below, but it does help to make the state space

manageable in applications.

Now, all of the transition probabilities are identified, since the distributions of highest bids
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{G1
j}j∈J , survival rate r, activity rate τ and the supply matrix Q are all identified. The

selection probability s(b) is the probability that a bidder who enters the market in one of

the transitory states corresponding to a particular good visits every other transitory state

before hitting the absorbing exited state. This probability can be computed in closed form,

and thus s(b) is a known function of identified quantities, and so is itself identified.

This selection argument can be modified to account for other forms of dynamic selection.

For example, on eBay, we believe that only the top two bids in each auction may reasonably

be used in estimation, generating a new selection problem (the bidders making the top two

bids are a non-random set of types). This too can be modeled and thus addressed—see

Appendix B.6 for details on our approach to selection in our empirical application.

So we can observe the density of complete bid vectors g(b) and we can identify s(b). This

is enough to identify the density of bid-types:

f̃(b) = k
g(b)

s(b)

where the constant k =
∫
s(b)f̃(b)db, the probability that a randomly chosen bidder’s

bid vector is complete, is observed in the data. Examining this expression, the selection

correction “up-weights” the types who are least likely to bid on all products. Applying

the inversion formula in (8) to f̃ gives us the density of valuations f and hence proves

non-parametric identification in this two good example.

4.2 Identification Theorems

In this section we state and prove the main identification result of this paper. We work with

the following demand system:

xi,j,l,t = x̌i,j + zl,tγ + ξl + εi,t (9)

where xi,j,l,t is bidder i’s valuation for item l—an instance of good j—sold at time t, x̌i,j is

bidder i’s perfectly persistent valuation for good j (the vector x̌ is sampled from F), zl,t are

(potentially time-varying) characteristics of this particular item, γ is a vector of common

preferences for those time-varying characteristics, ξl is an item-specific specific shock sampled

iid across items from Fξ and εi,t is an idiosyncratic shock sampled iid across bidders and
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auctions from Fε. We assume that both ξl and εi,t have zero mean and finite variance, and

that they are mutually independent of each other and the observables zl,t.

This demand system generalizes the example presented above in two ways. The first is

that we include both item-specific observables (zl,t) (e.g. this camera comes bundled with a

battery) and unobservables (ξl) (e.g. this camera appears to be in good condition, from the

photos). We assume that the observables zl,t are independent of the transient unobservables

ξl and εi,t, though we place no restrictions on the correlation between zl,t and the persistent

valuation x̌i,j. The second is a mean-zero idiosyncratic shock εi,t. This shock allows us to

rationalize data where we see variation in bids over time by the same bidder on the same item.

We assume that the idiosyncratic shock is privately known by each bidder, and unobserved

by the econometrician.

The demand system in (9) is quite flexible, placing limited restrictions on the data generating

process. It can be made more or less flexible depending on how the goods indexed by j are

defined. For example, defining all compact cameras to be a single good reduces the model

to one in which consumers have common preferences up to a scalar error term. On the

other hand, if we take every item with different observables as a distinct good (e.g. 7MP

cameras with batteries are distinct from 7MP cameras without), the demand system becomes

extremely flexible, as one can identify the joint distribution of valuations for each of these

goods (and the term zl,tγ becomes redundant). The cost is that the cardinality of the product

space becomes large, and the data requirements for estimation explode accordingly.

We can accommodate a demand system with random coefficients on product characteristics

as a special case (see Corollary 1). In fixed price demand systems, an identification challenge

is posed by correlation between the prices and the unobserved quality term (here ξl). Here

this problem doesn’t arise, because prices are an outcome of the auction, rather than a choice

of an optimizing seller. That said, we have not allowed for reserve prices in the current paper,

and if we had, it would be reasonable to assume they were correlated with ξl.
15

We also assume that the observables zl,t are independent of the item level unobservables ξl,t.

This is consistent with the IO literature on fixed price markets (product characteristics are

assumed exogenous), but just as in that literature, it may be dispensed with if we assume

the existence of appropriate instruments for the endogenous observable characteristics.16

15Existing approaches based on inverting reserve prices to recover unobserved quality may be of use in
this case—see for example Roberts (2013) and Decarolis (2018).

16Below, we argue that the coefficient γ may be consistently estimated by an OLS regression of the bids
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We can apply Lemma 2 to this demand system. Here the public state variables are the good

being listed j and the commonly observed item shock ξl. The distribution of highest com-

peting bids G1
j(·|ξ) is conditioned on the realization ξ, and has additional variance relative

to the model with permanent types because of the idiosyncratic shocks. We will assume

throughout what follows that the distributions of highest bids {G1
j(·|ξ)} have no gaps in

their support, so that the best responses are unique. Then optimal bids are given by:

bi,j,l,t = x̌i,j − r
∑
k

Q̃j,kvk(x̌i) + zl,tγ + ξl + εi,t (10)

where vk(x̌) is the perceived continuation value of a bidder of type x̌ who is active and

bidding on product k. Notice that the continuation value does not depend on the current

shocks ξl and εi,t, because they are independently distributed over time and so today’s shocks

are not informative as to future payoffs.

We now turn to identification. We assume that in each auction, the econometrician observes

the product-type being sold, all bids and the identities of the bidders that made them. We

proceed with a sequence of lemmas.

Lemma 3 (Identification of Dynamic Parameters). The parameters {λ, τ, r, Q} are

non-parametrically identified.

The logic follows that offered in the example above. Identification of Q is immediate, since

it is directly observed. λ is identified from the mean number of entrants each period. Finally

equations (5) and (6) still apply in the general case, implying identification of the activity

and survival rates.

Next, we argue that the parameter γ can be identified in a first-stage (cf. Haile et al. (2006)).

Define a bid-type on each product j by b̌i,j = x̌i,j − r
∑

k Q̃j,kvk(x̌i). This is the persistent

part of the optimal bid made by bidder i on product j. Then the bidding function in (10)

can be written as:

bi,j,l,t = zl,tγ + νj + ξl + εi,t + ui,j

where νj ≡ Ei[b̌i,j] is the expected bid-type on product j, and ui,j = b̌i,j − Ei[b̌i,j] is the

difference between the bidder i’s bid-type for product j and the average. Now by assumption

on the observable characteristics zl,t, including fixed effects for each of the goods j = 1 . . . J . In the presence
of endogenous characteristics and instruments, one could instead do an IV regression of the bids on the
observables, instrumenting as necessary, and once again including product fixed effects.
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zl,t is independent of ξl and εi,t. Moreover because bidders do not select into auctions on

the basis of their characteristics zl,t, the error ui,j is uncorrelated with zl,t.
17 The only

term potentially correlated with zl,t is νj, since certain products may tend to have certain

characteristics. In view of this, γ is identified (and may be consistently estimated) by OLS

regression of the bids on the observables, with product fixed effects.18

For the rest of this section we therefore assume that γ has been identified and all bids have

been “normalized” by subtracting the term zl,tγ (i.e. we will simply ignore the term zl,tγ

in the identification arguments that follow). Let the full bid type be b̌ (i.e. the J vector

consisting of b̌i,j for each j = 1 . . . J). Also let B1
j,l,t be the winning bid in each auction,

and define Ǧ1
j as the distribution of B̌1

j,t ≡ B1
j,l,t − ξl (i.e. the distribution of the highest

bidder-specific part of the bids). Let u(b̌) be defined as follows:

uj(b̌) =

∫
Ǧ1
j(b̌j + ε)

(
b̌j + ε− EǦ1

j
[B1

j |B1
j < b̌j + ε]

)
dFε(ε). (11)

It turns out that u(b̌) is exactly the “annuity payoff” that subsequently gets summed to

derive a continuation value:

Lemma 4 (Inversion). There exists an inverse bidding function ζ : RJ → RJ mapping

bid-types into persistent valuations:

ζ(b̌) = b̌ + rQ̃(I − rQ̃)−1u(b̌) (12)

The argument is similar to the one in the example above: values are equal to bids plus

continuation values, and continuation values are a discounted and summed geometric series

of per period payoffs of u(b̌). The problem is that the inverse bid function ζ is not as easily

identified from the data, since from the final line of (11) the u(b̌) vector can be constructed

only with the knowledge of the Ǧ1
j bid distributions and the distribution Fε(ε).

To proceed, notice that G1
j—the observed distribution of highest bids on good j—is a con-

17Even with selective entry there is likely to be no correlation: since all the bidders have common prefer-
ences for zl,t, the bidders expect the value of those characteristics to be bid out, and so there is no strategic
reason to enter auctions with particular values of the observables. This is true of our application, where
even though we only observe bids from the top two bidders—and therefore the bid types in auctions for high
camera resolution are positively selected for their preferences for high resolution—there is still no correlation
between the other observable characteristics and bid type.

18In our empirical application, we use generalized least squares (GLS), which is more efficient for our
particular specification. We thank the editor for this suggestion.
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volution of the distribution we want (Ǧ1
j) and Fξ, the distribution of item shocks. If we can

identify Fξ, then under some technical conditions, we can also identify Ǧ1
j by deconvolution.

To identify Fξ, we look at the joint distribution of pairs of bids placed by bidders that have

just entered the market. Since both the persistent part of their valuations and the idiosyn-

cratic shocks εi,t are mutually independent on entry, any correlation we observe in their bids

must be due to unobserved heterogeneity.19 This pins down Fξ.
20 To identify Fε we look in-

stead at the joint distribution of pairs of bids of the same bidder in two successive auctions of

the same item. This joint distribution of bids can be decomposed into a persistent part that

induces all correlation, the sum of b̌j and ξl, and a transient part, εi,t, that is independent

across auctions.21 This allows us to identify Fε(ε).

Lemma 5 (Deconvolution). Suppose (i) that the density of idiosyncratic shocks satisfies

a thin tails condition: fε(u) < c1e
−c2|u| for large u, and (ii) that the characteristic functions

of ε and ξ have isolated real zeros. Then {Ǧ1
j}j∈J , Fξ and Fε are all identified, and thus so

is ξ(b̌).

The thin tails condition (i) suffices to identify Fε and Fξ, by application of the results in

Evdokimov and White (2012), who extend the deconvolution results of Kotlarski (1967). To

subsequently recover {Ǧ1
j}j∈J requires deconvolution of the highest bid distributions {G1

j}j∈J
with Fξ, which is permitted by condition (ii).22 Both conditions are weak and apply to most

distributions commonly encountered including the normal, truncated normal and uniform.

The last step of the formal identification argument is arguing that the distribution of bid-

types is identified, and thus can be inverted to recover the valuations. This result extends

the selection correction arguments offered in the example to the general case of J-goods. As

mentioned during the discussion of the example, it will considerably simplify the arguments

if we assume that the probability of winning is independent of the bidder’s experience i.e.

that whether they win when bidding on good j today is independent of the fact that they

lost on good k the last time they bid. To formalize this, let h ∈ H be a bidder history: a set

19Conditioning on having just entered is important, since selection on having repeatedly lost may be
another source of correlation.

20This is similar to the argument made in Krasnokutskaya (2011) regarding the identification of unobserved
heterogeneity in procurement auctions.

21The transient part has a different distribution in the second auction than the first, since appearing in
the second auction implies selection on the idiosyncratic error in the first - we account for this in the proof.

22 Let φX(·) denote the characteristic function of a random variable X. By independence, we have
φB̌1

j
(t) = φB1

j (t)/φξ(t), which is undefined whenever φξ(t) = 0. Still φB̌1
j
(t) remains integrable as long as the

set of such zeros is of (Lebesgue) measure zero, so that Ǧ1
j is identified by inverse Fourier transform.
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of tuples, one tuple for each time period in which the bidder was active, where each tuple

consists of the time period they were active in, what good they bid on in that time period,

what they bid, and whether they won or lost (e.g. “bid b on good 1 in period 12, lost”).

Assumption 3 (Independence of competing bids). The distribution of highest rival

bids is independent of bidder history i.e. G1
j(b|h) = G1

j(b) ∀j ∀h ∈ H.

This is an empirical counterpart to Assumptions 1 and 2. There we insist that bidders don’t

condition on their own personal experience in forming beliefs about rivals; here we assume

that doing so would not be informative.

Implicitly this is an assumption that the activity rate τ is small, since the market quickly

converges back to the ergodic measure from any state (see Lemma 6 in the appendix for a

formal statement and proof of this), so that if the number of auctions between each time a

bidder participates is large, this assumption is approximately correct.23

What this assumption buys us is the Markov state formulation of the selection problem

from the example. Define s(b̌) to be the probability that bid-type b̌ bids at least once

on every product prior to exiting the market. In this general case, the probability of

survival following an auction is slightly different due to the presence of shocks: rj(b̌) =

r
(
1−

∫
Ǧ1
j(b̌j + ε)dFε(ε)

)
, where

∫
Ǧ1
j(b̌j + ε)dFε(ε) is the ex-ante probability of winning

auction j, leaning on Assumption 3 to avoid conditioning on the bidder’s record. As in the

example, the probability of visiting all transitory states prior to exit depends only on the

transition matrix, which in addition to rj(b) depends on Q̃. From Lemma 3 and Lemma 5

these objects are both identified, and thus so is s(b̌) (for a more detailed proof see Lemma 8

in the appendix).24

The last stage of our identification argument again makes use of complete bid vectors. In

contrast to the example, in this demand system a bidder may have multiple distinct bids

on the same good, due to shocks. For each bidder who bids on every product, define a bid

vector b by selecting from their bid data the bid corresponding to the first time they bid

on each product, with missing entries for any product they did not bid on. A complete bid

23In our empirical application, if we assume that all bids are observed, then on average 305 auctions pass
between bids by the same bidder, implying τ = 0.00327.

24We note that since the conditional bid distributions G1
j (b|r) are observable, the identification arguments

made here can be extended to do without Assumption 3, at the cost of some additional complexity. The
details are available in an earlier draft of this paper, and are available on request.
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vector has no missing entries, and from equation (10) can be written as:

b = b̌ + ξ + ε (13)

where b̌ is their bid-type, ξ is the J-vector of item-specific shocks in the auctions they

participated in, and ε are the J-vector of idiosyncratic shocks. Each of the random variables

on the RHS is mutually independent, and the LHS is a convolution of these random variables.

This suggests an identification argument based on deconvolution. Let G be the ergodic

distribution of complete bid vectors, and let F̃ and F̃S be the distribution of bid-types, and

the distribution of bid-types conditional on bidding at least once on every good respectively.

The relationship between F̃S and G is given by:

G = F̃S ∗ Fξ ∗ Fε (14)

where ∗ denotes the convolution operator, Fξ is the distribution of ξ and similarly Fε is the

distribution of ε. Since G is a distribution of bid vectors, it is observable. By Lemma 5, the

univariate Fε and Fξ are both identified and have isolated real zeros, and hence so do their

vector counterparts Fξ and Fε, which are just iid samples of size J from those distributions.

This implies that F̃S can be identified by deconvolution from (14). Finally, we can re-weight

F̃S according to the selection probability to get F̃ and thus F by Lemma 4. Summarizing:

Theorem 2 (Non-parametric identification). Let Assumption 3 and the conditions of

Lemma 5 hold. Then F, Fξ and Fε are all non-parametrically identified.

We close the section by examining a slight modification: a random coefficients demand

system, where goods are described by observable characteristics and bidders have preferences

over characteristics rather than goods.

xi,j,l,t = Wjαi + zl,tγ + ξl + εi,t (15)

where now Wj is the jth row of a J ×K matrix W of product characteristics (where K ≤ J

is the number of characteristics) and αi is the bidder’s type, a persistent vector of random

coefficients drawn from Fα on entry (the definitions of all other expressions remain the same).

This is very similar to the demand system in (9) except that the persistent valuations for

each product have been replaced with persistent preferences (random coefficients) over a
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lower dimensional set of product characteristics W (which are different from the item char-

acteristics zl,t). This suggests that we could go ahead and learn the distribution of valuations

F and then project down onto W to learn the distribution of random coefficients Fα. Under

a rank condition on W , this is possible:

Corollary 1 (Identification with Random Coefficients). Let Assumption 3 and the

conditions of Lemma 5 hold. In addition, assume that the design matrix W has full rank.

Then Fα, Fξ and Fε are all non-parametrically identified.

5 Empirical Application

We apply our identification result to estimate demand in the auction market for compact

cameras on eBay.com, using a specification of the form in (15) above. As noted earlier, the

eBay auction design is strategically similar to a sequence of second-price sealed bid auctions.

Moreover, most consumers only purchase a single camera, so the unit demand assumption

seems reasonable.

Compact cameras are measurably differentiated in a salient characteristic—namely resolution—

which consumers may value differently, and therefore we estimate a random coefficients

variation of our model. The demand model we estimate allows for random consumer prefer-

ences for resolution. We estimate the parameters of this model using a maximum likelihood

approach.

The application is motivated by our ambition to show how one might bridge the gap from

identification to estimation in a particularly difficult setting with data limitations, unob-

served heterogeneity, and random preferences; i.e., to develop an estimator that takes ad-

vantage of much of the flexibility of the identification results. As in all empirical work, this

flexibility imposes tradeoffs. Here we have taken the supply process that determines which

camera is auctioned next as exogenous, and in addition we have assumed that sellers do

not use reserve prices strategically (a feature that is easy to verify in the data). These are

limitations of our approach.

Nonetheless, we put our estimates to use by documenting the effects of dynamic bidder

behavior on optimal reserve prices. As we show, if sellers have the power to commit to

persistent reserves over a long time horizon, this diminishes the bidders’ option value of

losing, which means higher bids. In our simulations, this effect can as much as double
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expected seller revenue vis-á-vis comparable transient reserve prices, offering insight on how

market power might manifest in an auction marketplace with large sellers.

5.1 Data and Market Overview

The eBay Marketplace. eBay is widely considered to be the world leader in online

auctions. Various elements of its platform design, such as the use of proxy bidding agents,

feedback scores and “buy-it-now” offers have been widely copied. At any time, eBay hosts a

large number of items from a variety of sellers. Buyers can browse these, either by navigating

through categories delineated by the site, or by directly searching for key phrases. For

example, a search for “digital compact camera” will typically bring up thousands of listings.

Unsurprisingly, there is substantial heterogeneity in the cameras offered, in terms of brand,

resolution, zoom and accessories (to name some of the most salient features).

Restricting to auctions yields a list of items, ordered by time until auction end.25 These

auctions all end at different times, so bidders face a set of sequential auctions. Bidders have

the options to bid using eBay’s proprietary “proxy bidding” system, however much prior

work has found that most bids are placed in the last day of the auction (Roth and Ockenfels,

2002; Lewis, 2007; Backus et al., 2015).26 The combination of late and proxy bidding suggest

that eBay’s auction market is well approximated as a sequence of second-price sealed bid

auctions, so our model can be applied to this setting.

Data. We purchased a dataset concerning all sales of digital compact cameras over a 2-year

period from TeraPeak, a data analytics company. The data includes attributes of the camera

25Some items are offered at “buy-it-now,” i.e. fixed, prices. As Einav et al. (2016) have documented,
over 60% of items on eBay are now at fixed prices (though auctions were more common at the time our
data was collected). Backus et al. (2019) and Backus et al. (2020) study a subset of these items are “best
offer”-enabled, and therefore subject to alternating sequential offers bargaining. We will ignore the presence
of both fixed-price and negotiated markets in what follows, effectively ignoring substitution opportunities
between the two markets in favor of focusing on substitution within the auction market.

26In the proxy bidding system, bidders enter the maximum they are willing to pay for the item, and then
eBay’s proxy bidding system will bid up from the current standing price in standardized increments on their
behalf until either their bid is the highest yet entered in the system, or an additional increment would take
them over their maximum. For example, if bidder A enters a bid of $8000 on a camera where the standing
price is $6000 and the highest bid placed in the system by a rival is $7000, then the system will update the
standing price to $7100 ($7000 + $100 increment), and will record this bidder as the currently high bidder.
Under unit demand high bidders become “committed” to the auctions they enter, in the sense that if they
bid in another auction, there is a risk of winning a second object they don’t need.
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auctioned (resolution, zoom, brand, product name, bundling of a tripod, extra battery etc),

attributes of the listing (starting price, secret reserve, listing title), and the outcome of the

auction. Each listing may be associated with several bids, all of which we observe—including

the highest bid, which is not visible on the website and typically unavailable in “scraped”

auction datasets from the platform. Market participants are persistent in our dataset—as in

our model—and we observe their attributes (feedback, location) and construct measures of

experience and activity from observed behavior.

We work with a subset of the data, consisting only of new compact cameras, sold in the

3-month period between February 5th and May 6th of 2007. We restrict attention to new

cameras to limit the influence of unobserved heterogeneity, though as we will see, this is still

a substantial problem. We analyze this particular time period because supply was relatively

stable over those 3 months, so the stationarity assumptions implicit in our calculations of

the continuation values are reasonable. We pick cameras with the most common resolution

levels: those with (rounded) resolution between 5 megapixels and 10 megapixels (MP). We

clean the data by excluding auctions with missing data, potential shill bidding, outlying

bids and auctions that are terminated by the first bidder exercising a buy-it-now option

(this is unusual). See the data appendix for further details on sample construction, as well

as summary statistics of the dataset.

We follow Haile and Tamer (2003) and Song (2004) and restrict attention to the first- and

second-highest bids in each auction. This is motivated by a disconnect between the sealed-

bid abstraction and the actual, ascending-price character of online auctions. For bidders

who are outside of the top two, we may not observe the highest amount they would have

been willing to bid (for instance, if they arrive after the standing price of the auction already

exceeds the bid they intended to place).

A first look at the dataset yields four stylized facts that guide the design of the empirical

model in what follows. We document each of these claims more carefully in Appendix

Section B.3. First, bidders do substitute across auctions for different camera types. This is

important for identifying cross-elasticities. Second, consistent with our theoretical model, the

vast majority of sellers set non-binding starting prices and do not use secret reserve prices.

This is demonstrably suboptimal, but setting an optimal reserve is a difficult problem in

practice, and the platform encourages sellers to set low starting prices.27 Third, bidders

have substantial option value. We observe substantial price fluctuations over time, as well

27See, e.g., https://www.ebay.com/help/selling/selling/pricing-items?id=4133. Accessed July 23, 2020.
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as substantial delay in bidder re-arrivals. Fourth and finally, there is substantial unobserved

product heterogeneity, as the observables explain little of the fluctuations. Therefore we

endeavor a model that can accommodate these salient features of the data.

5.2 Estimation

We construct a demand system in which consumers obtain value from the purchase of a

single camera, a value which has an idiosyncratic component and a common component.

Formally, bidder i’s valuation for product j offered in auction t is given by:

xi,j,l,t = αi,c + resjαi,r︸ ︷︷ ︸
idiosyncratic

+Zj,tγ + ξl︸ ︷︷ ︸
common

. (16)

This combines random coefficients and unobserved heterogeneity to exploit the power of

Corollary 1 and adds some observable common demand shifters Zj,t that will be estimated

and subtracted out in a first stage. Bidder i’s type in our model, αi, is a double: their

fixed utility draw for obtaining any camera (αi,c) as well as an idiosyncratic preference shock

for resolution (αi,r).
28 The auction-specific term ξl captures unobserved heterogeneity that

is observable to all bidders, but not the econometrician. We assume that it is distributed

normally with mean zero and variance σξ,j that varies freely with the resolution type of the

camera. The bidder type αi is drawn, iid upon bidder entry, from the distribution Fα, which

is our main estimation target. We assume mutual independence of (αi, Zj,t, ξl). On the

supply side, we make the simplifying assumption that the distribution of arriving auctions

is iid multinomial over the product space with a J-vector of probability weights π (note that

this implies that Q is a square matrix in which every row is equal to π).2930

28An alternative strategy would have been to allow for random coefficients in bidders’ preferences for
each brand. But because the set of brands is large, this would introduce many additional parameters. We
follow the fixed-price demand estimation literature in focusing on random preferences for low-dimensional
characteristics.

29We have made these choices to fit the salient features of the data, however we acknowledge there are
other models that may be of interest, depending on the application. See Appendix Section B.4 for a fuller
discussion on this point. In particular, we consider the incorporation of aggregate fluctuations and public
states.

30Note also that we do not include a transitory idiosyncratic shock (εit), which implies that bidders bid
the same amount on the same product, up to unobserved heterogeneity (ξl). Therefore, if two bidders are
observed bidding on the same product, the difference between their bids ought to be constant (thanks to
an anonymous referee for pointing this out). Due to our restriction to first- and second-highest bids, this
scenario never occurs, but if it did then the additional flexibility afforded by a transient shock would be
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First-Stage Estimation. We follow the constructive identification argument of Lemma 3

to recover estimates of the supply process (π), the exit rate (r) , the desired bid normalization

(γ), as well as the distribution of observed bids (G(1) and G(2)). π̂ is given by the empirical

frequencies; r̂ is estimated using a negative binomial process predicting exit rates among

the sample of bidders who never win, corrected for censoring at the end of our dataset; γ̂ is

obtained by FGLS,31 σ̂ξ is the standard deviation of within bidder-product differences in bids,

and finally, the shape and scale parameters of Ĝ(1) and Ĝ(2) are chosen to match the mean and

variance of the deconvoluted distribution. As controls in the first-stage regressions we include

product line fixed effects, listing attributes including shipping options, seller feedback, and

optional listing features (e.g., sellers may pay a fee for their results to be highlighted in search

results), as well as a set of dummies for resolution, optical zoom, and digital zoom levels.

See Appendix Section B.5 for further details, as well as precise values in Table B-4. Also, at

this point it is possible to estimate consumer surplus in each auction, which is substantially

larger than would be predicted by the static model. We discuss this in Appendix Section

B.8.

Estimation of Demand. At this stage, we have estimates of π, r and the distributions

{G1
j , G

2
j} of first and second order statistics, after adjusting for observed and unobserved

heterogeneity. We also have a dataset of normalized bids that were themselves first or

second highest bids in auctions, and therefore plausibly equal to valuation less continuation

value. In principle, we could continue by applying our nonparametric identification strategy

from Theorem 2 directly in estimation, for bidders who are observed in the top two bids

on at least two different products (since the random coefficient is two-dimensional, two

different products suffices for identification). But there are 232 such bidders in our estimation

sample, and this makes the necessary deconvolution analysis unattractive in view of the slow

convergence properties of such estimators (Carroll and Hall, 2004). Moreover, we would like

to also use the 13,392 bidders in our estimation sample who appear in the top two bids on

only one camera type.

necessary to fit the data.
31There are two important things to note in the first-stage regressions. First, the constant and any

coefficient on resolution would be biased due to non-random selection on αc and αr; therefore we include
dummy variables for resolution types and add the estimated values back in when computing normalized
bids. Second, and thanks to editor Aureo de Paula for this suggestion, we use FGLS, allowing the error to
be correlated with resolution, because idiosyncratic types αr introduce heteroskedacticity, rendering OLS
(which we used in a prior version) inefficient.
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So instead we take a parametric approach, assuming that αc and αr are distributed N(µc, σc)

and N(µr, σr), respectively. Therefore θ ≡ {µc, σc, µr, σr} makes up the set of parameters of

the demand system we ultimately hope to recover. Under our parametric assumptions, we

have the following likelihood of each observation:

L(bi|θ) =

∫
P{Bi|β(α)}

P{|Bi| = 2|β(α)}︸ ︷︷ ︸
selection probability


∏

j∈{Bi}

fξ,j(bj − βj(α))

︸ ︷︷ ︸
unobserved heterogeneity

 |β′(α)|dF (α|θ)︸ ︷︷ ︸
demand

. (17)

where bi is a two-vector, indicating an observed pair of bids by i; Bi is the set of products

bidder i bids on; β(α) is type α’s bid-type (i.e. what they would bid on each product in the

absence of unobserved heterogeneity); fξ,j is the density of ξl, assumed normal with mean

zero and variance σ2
ξ,j and F (α|θ) is the distribution of α at parameter vector θ.

This likelihood function has three components in addition to the Jacobian:32 the first,

P{Bi|β(α)}/P{|Bi| = 2|β(α)} is the selection probability; the likelihood that a bidder of

type α is observed in a subset of the product space Bi conditional on the event |Bi| = 2, i.e.

our sample construction. The second component of the likelihood function is the deviation

of the observed bid b from the predicted bid β(α) on the components j ∈ Bi, which can be

accounted for by unobserved heterogeneity. Finally, we integrate with respect to the type

distribution F (α|θ), the only point at which the parameter vector θ enters.

Estimating bid functions and selection probabilities. In order to compute the likeli-

hood of any observation at a parameter vector θ, we will need to compute the optimal bidding

function β(α) and the selection probability P{Bi|β(α)}. See Appendix B.6 for details on

this computation, which follows closely the identification arguments of Section 4.

Figure 2 illustrates the resulting bid functions and selection probabilities when these proce-

32The Jacobian of interest here sits in a lower-dimensional space than the bid vector. Here, we construct
it as

|β′(α)| = | ∂βi
∂αc

∂βi′

∂αr
− ∂βi′

∂αc

∂βi
∂αr
|,

– where i and i′ are the two resolution types observed for that particular bid. However, since we only need
two elements to invert back to α, it is possible to show that the likelihood function is invariant to the choice
of i and i′.
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(a) αr = 0 (b) αr = 20

(c) αr = 0 (d) αr = 20

Figure 2: Estimated Bid Functions and Selection Probabilities. This figure presents bid functions
and selection probabilities as a function of αc, holding fixed αr at two levels: 0 and 20.

dures are applied to our data. The selection probability is for the event that a bidder bids

on exactly two different products (|B| = 2), i.e. that a bidder is selected into our estimation

sample. Panel (a) shows the bid function for a bidder with αr = 0, i.e. a bidder who places

no value on resolution, and consequently bids the same on every product. Their bid function

“peels away” from the 45-degree line. This makes intuitive sense: as αc increases, their

continuation value increases as well, causing them to shade their bids. Panel (b) repeats this

exercise for the case where αr = 20. They now bid differently on each product, with the five

dotted lines showing their bids on the lowest resolution camera (bottom line) up to the top

resolution camera (top line), as αc varies. The shape is largely preserved, except that now

there is a positive intercept because valuations are positive even with αc = 0.

In panels (c) and (d) we show the selection probabilities for these two types of bidders (αr = 0
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in (c) and αr = 20 in (d)) as αc varies. The “hump-shape” arises because the probability

of |B| = 2 is increasing at first as the likelihood that the bidder is ever first or second rises,

but later declines as the probability that they win their first auction and exit before bidding

again goes to one.

Optimization. See Appendix B.7 for a detailed discussion of how we solve the ML opti-

mization problem. We show that, because the parameter vector θ enters the likelihood (17)

only through the distribution of random coefficients F (α|θ), this problem is particularly

well-suited to importance sampling (Kloek and van Dijk, 1978), which yields dramatic com-

putational gains in estimation.33

5.3 Results

Estimates from this ML exercise are presented in Table 1.34 Our results suggest that camera

resolution is the main determinant of consumer utility, but that there is substantial het-

erogeneity in how consumers value this attribute. This variation in the two components of

utility for a camera predicts that the winner of an auction will depend not merely on the

valuations of the bidders but also which camera is up for auction. A bidder with a high αc

and low αr will bid more aggressively in an auction for a 5MP camera, while a bidder with a

low αc and high αr will bid more aggressively in an auction for a 10MP camera. Recall that

we have estimated F, whereas the observed bids in the data (i.e., first- or second-highest

bids) will tend to come from bidders sampled the right tail of the distribution.

5.4 Counterfactual Reserve Prices

With our estimates of the demand system in hand, we consider the problem of a large seller

with market power, who controls approximately a third of the market, and can set reserve

prices in these auctions. We are interested in this scenario because, for lack of models that

allow substitution between auctions, little is understood about how market power manifests

33The argument for importance sampling as a technique for reducing the computational burden of struc-
tural estimation is due to Ackerberg (2009).

34The ML estimator yields standard errors that treats the first-stage parameters as known, and will
therefore be too small (Murphy and Topel, 2002; Karaca-Mandic and Train, 2003). Following the suggestion
of Petrin and Train (2003), we augment these standard errors by bootstrapping the first-stage estimates,
clustered by bidder, and re-estimating the model for each bootstrap.
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Table 1: Demand System Estimates

αc αr
Mean 1.6664 34.4463

( 1.7798) ( 0.2747)
Standard Deviation 35.3059 5.9212

( 1.0554) ( 0.1460)

Notes: This table presents estimates for {µc, σc, µr, σr}, the parameters governing the distribution of random
coefficient preferences for compact cameras according to equation (16).

in auction marketplaces.35 For convenience of computation, we assume that this seller sells

all of the 7 megapixel cameras. As a baseline, we first simulate the expected sales prices for

each kind of good, assuming no reserves. The seller then sets reserves that are parameterized

by a single parameter f , the fraction of the baseline expected sales price. Throughout, we

assume that sellers of other cameras (5, 6, 8, and 10 megapixel cameras) do not use reserve

prices.

We consider two types of reserve pricing policies: a transient reserve, where the monopolist

sets a reserve price in the current auction alone, and a persistent reserve policy, where

the seller commits to set reserves in the current auction and all future ones. A transient

reserve price may raise revenue by increasing the expected payment when it binds (at the

cost of fewer sales when no bid exceeds the reserve). A persistent reserve price policy has

the same effect, but in addition, it will also depress bidders’ continuation values by raising

expected prices in the future, which in turn pushes out the bid function and raises revenues

still more.36 It is the market power of the large seller that gives them the ability to shift

bidder expectations, and therefore benefit more from a reserve policy. In this sense, our

counterfactual offers a first step towards understanding the exercise of market power in a

dynamic auction marketplace.

In order to compute this counterfactual, we simulate the market, fixing an entry process

of E = 2 + X, where X is Poisson with λ = 1.9, so that the mean of 3.9 matches the

empirical ratio of observed bidders to auctions in our dataset, and there are always at least

35Notable exceptions are McAfee (1993) and Peters and Serevinov (1997), however they focus on the
competitive case, predicting that reserve prices in equilibrium will be equal to sellers’ costs.

36There is a second-order effect as well: the persistent reserve price policy will change the ergodic distribu-
tion of bidders—on average there will be more bidders per auction, with more mass just beneath the reserve
point cutoff. This, however, will not raise revenues for that particular product (although it may for others).
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Figure 3: Demand and Profit Per Auction for 7 Megapixel Cameras. Panel (a) of this figure
presents simulated demand functions for 7 megapixel cameras under transient (solid line) and persistent
(dashed line) reserve price policies using the estimates of Table 1. Panel (b) depicts the corresponding profit
function under an assumption that the seller’s costs are equal to 90% of the baseline price.

two bidders.37 Then we simulate outcomes under different reserve price policies for the seller.

For the persistent case, this requires computing a fixed point between the bidding function

and the distribution of the highest rival bids, which we compute by iteration: we compute

the bid function, simulate auctions, estimate the parameters of the distribution of the highest

competing bids, and repeat this process until it converges.

The effects of the persistent reserve policy are shown in Panel (a) of Figure 3. Here we

plot the probability of sale against the reserve price for both transient and persistent reserve

price policies, and we see that the persistent reserve price policy has rotated the demand

curve outwards, particularly for higher reserve prices that are more likely to be pivotal. This

rotation of the demand curve implies that the seller will have an incentive to set higher reserve

prices, and will achieve higher profits. In Panel (b) of Figure 3 we plot the corresponding

profits for different reserves under an assumption that the seller’s costs are equal to 90%

of the baseline sale price. These costs may be realistic if they are thought of as including

the outside option to wait and sell in a subsequent auction, or sell the product on another

platform. We see that profits are consistently higher under the persistent reserve price policy.

Note that the profits achieved by a transient reserve are available to any seller, regardless of

size. But it is only by virtue of the large market share of the seller that, through a persistent

reserve price, they are able to depress bidders’ continuation values, raise bids, and thereby

achieve higher profits. The profit difference is the market power of the large seller.

37We do this because we almost never observe fewer than two bidders in the data.
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Table 2: Optimal Reserve Prices

Seller Costs as a Percent of ASP

0 10 20 30 40 50 60 70 80 90
Transient

Optimal Reserve 83 83 83 83 83 91 91 92 95 106
Pct. Change in Profits 0.30 0.34 0.39 0.45 0.54 0.76 1.27 2.22 4.79 21.83
Pct. Change in Cons. Surplus -1.60 -1.60 -1.60 -1.60 -1.60 -4.09 -4.09 -4.62 -6.77 -30.10

Persistent
Optimal Reserve 84 93 93 93 93 93 93 97 99 109
Pct. Change in Profits 0.81 0.95 1.25 1.65 2.17 2.90 3.99 6.26 12.19 41.11
Pct. Change in Cons. Surplus -3.91 -8.13 -8.13 -8.13 -8.13 -8.13 -8.13 -9.80 -10.58 -15.79

Notes: This table presents optimal reserves for the large (all 7mp cameras) seller, under transient and
persistent reserve price policies, as well as percentage changes in profits induced by those policies, relative
to the no-reserve baseline.

In Table 2 we consider the optimal reserve price problem of the seller for a range of seller

costs. Using grid search over our simulated outcomes, we identified optimal reserves under

both the transient reserve price policy as well as the persistent reserve price policy. We

find that for low costs, the use of persistent reserves is of little consequence for the seller.

However, for high costs, persistent reserves can have a substantial effect on seller profits,

raising them by up to 41% over the no-reserve baseline in the range that we consider. The

percentage change in profits for persistent reserves over the range is consistently double to

triple the size of that predicted for transient reserves.

This highlights the importance of dynamics for understanding reserve prices, and the leverage

that a large seller in an auction marketplace possesses. Although the level of the optimal

reserve changes only a little, the incentives to implement it are dramatically larger when the

seller can commit to future reserves, eroding the buyers’ continuation values, and therefore

raising their optimal bids. This is, to the best of our knowledge, a novel observation in the

literature on reserve prices.38

In the bottom row for each case we also consider the effect on consumer surplus. On a

per-auction basis, the transient reserve decreases consumer surplus by up to 15.79%, ap-

38Hickman et al. (2017), who like us find little use of reserve prices among eBay sellers, argue that the
reason for this is that the gains from optimal reserves are quite small—on the order of pennies, in their
application to laptops on eBay. While we find larger gains to transient reserves, on the order of dollars, we
view our result as qualitatively consistent. However we also find that the gains are much larger for sellers
with market power, which is consistent with casual empiricism: reserve prices tend to be used by long-run
players with market power, e.g. procurement agencies and advertising platforms.
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proximately half of the loss from the use of persistent reserve prices.This divergence is due

to the fact that when reserve prices are persistent, bidders adjust optimally. The loss in

surplus from reserve prices occurs when a listing does not sell even though the bidders’ val-

uation is higher than the reserve (due to optimal shading); by raising their bids, bidders

mitigate these losses.

A limitation of our analysis is that we take seller participation as exogenous. This is con-

sistent with our focus on demand, however a fuller model that captured both sides of the

market might incorporate the possibility that sellers who fail to sell—because they have set

a reserve price—re-enter the market, thereby endogenizing their outside option. We have

assumed instead that sellers obtain their (fixed) marginal cost (which may stand in for the

outside option of selling in another market), in order to keep the seller side of the problem

static. Nonetheless, our counterfactual exercise shows how explicitly modeling substitution

between auctions—here, through the option value of waiting—allows us the opportunity to

study the exercise of market power in auction marketplaces. Especially as these marketplaces

proliferate, we believe this is an important direction for future research.

6 Conclusion

This paper offers a flexible demand system for the study of auction markets as markets.

We developed a notion of equilibrium in such markets and proved its existence, and in turn

were able to characterize the conditions under which bidders’ actions can be inverted to

infer their private type. While this is sufficient for identification if we treat auctions as

independent, isolated draws from a distribution, in an auction marketplace we also need

to account for the selection of bidders into the observed and identified set. Subject to the

constraints of non-participation, we are able to partially identify the distribution of types

by explicitly modeling this selection as a function of observable equilibrium objects. This

selection correction turns out to be an important source of flexibility in the model, allowing

us to accommodate standard limitations of auction data, such as only observing the two

highest bids.

A second important source of flexibility in the model is that we have made all the substitution

between products occur inter-temporally. High-dimensional preferences are thus projected

down to a valuation for the current product and a continuation value which, thanks to
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the Markov dynamics of the game, we can model in a straightforward way. These Markov

dynamics also give us the flexibility to extend the state space of the game to incorporate

arbitrary public signals about the state of the market on which bidder behavior may depend.

Of course, this comes at a cost, in that it restricts the way we think about bidder search and

entry. A fruitful direction for future work, given a compelling model of consumer search,

would be to use those search and entry choices to learn more about bidder preferences.

We illustrated much of this flexibility in an application to the auction market for compact

cameras on eBay. There we estimated the distribution of types for a utility function that

looked a lot like the kind you might estimate in a fixed-price market using standard methods

in industrial organization. We applied the estimates to simulate a counterfactual world in

which a large seller, controlling approximately one third of the market, could set reserve

prices (expressed as a fraction of the baseline expected sales price) for all products, thereby

depressing continuation values and raising current bids. We found that this effect can be

quite large. It rotates the demand curve outwards and raises profits; for example, if the

seller’s costs are 90% of the baseline, then the profits of the seller are 41% higher under

optimal persistent reserves rather than no reserve, versus 22% under an optimal transient

reserve. This difference stems from the market power of the large seller.

Our contribution—the development of a demand system for auction markets—is meant to

mirror similar work in fixed-price markets, and to a similar end: the structural estimation

of demand allows us to do counterfactuals of both private and public interest. There re-

main several open directions for future work. This framework could potentially naturally

to multi-unit demand, in which bidders may shade against the opportunity cost of moving

further down their marginal utility curve. This is an important direction for the modeling of

advertising auctions and treasury auctions. There are also unmet challenges in the modeling

of substitution across auctions within-period rather than inter-temporally. Auction markets

are a pervasive mechanism for the allocation of goods and services, and there remains much

work to be done to understand competition between and substitution among them.
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Appendices

A Proofs

Proof of Lemma 1.

Proof. Recall that G1
j is the CDF of the highest competing bid for good j. Then we have:

βj(x) = arg max
b∈R

∫ (
1(B1

j ≤ b)(xj −B1
j ) + 1(B1

j > b)ṽj(x)
)
dG1

j(B
1
j ) (1)

for ṽj(x) = r
∑

j Q̃j,kvk(x). Consider the RHS of (1). The integrand takes the value xj −B1
j

when B1
j ≤ b and the value ṽj(x) when B1

j > b and so can be maximized by choosing b so

that the event B1
j ≤ b occurs iff xj − B1

j ≥ ṽj(x) or equivalently B1
j ≤ xj − ṽj(x). This can

be uniquely achieved by setting b = xj − ṽj(x), since then B1
j ≤ b ⇒ B1

j ≤ xj − ṽj(x) and

B1
j > b ⇒ B1

j > xj − ṽj(x). Moreover when xj − ṽj(x) is interior to the support of G1
j , the

best response is itself unique, since with positive probability B1
j will occur in a neighborhood

of xj − ṽj(x), making it necessary (rather than just sufficient) to bid xj − ṽj(x).

To argue continuity of the bidding strategies, consider two types x1 and x2 in some state j,

and suppose wlog vj(x
2) > vj(x

1). Suppose the optimal strategy for type x2 is β(x2) = b2

and suppose that type x1 sub-optimally bids according to b2. x1 will obtain the same alloca-

tions and make the same payments in expectation as x2, since their behavior is identical. Let

the expected utility from this strategy be U1 for type x1 and U2 = vj(x
2) for type x2 where

the equality holds since the second type is playing optimally. Now U2−U1 ≤ maxj |x2
j −x1

j |
where the inequality holds since the difference in expected utility is upper bounded by the

maximum difference in expected utility conditional on exiting by winning a particular prod-

uct (or losing); and the RHS is exactly that maximum (if exit is by winning product j,
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expected payments are the same, and the difference in payoffs is exactly x2
j − x1

j). But

0 < vj(x
2)− vj(x1) < vj(x

2)− U1 = U2 − U1 ≤ maxj |x2
j − x1

j |. where the second inequality

uses the fact that U1 < vj(x
1), since vj(x

1) is obtained by playing optimally. By combining

similar arguments one can show that maxj |vj(x2)− vj(x1)| ≤ maxj |x2
j − x1

j |. This immedi-

ately proves that the continuation values are continuous in x, with a modulus of continuity

of 1: if maxj |x2
j −x1

j | ≤ ε then maxj |vj(x2)− vj(x1)| ≤ ε. Since bids are equal to valuations

less continuation values, we can write: maxj |b2
j − b1

j | = maxj |x1
j − ṽj(x1) − x2

j + ṽj(x
2)| ≤

maxj |x1
j − x2

j | + maxj |ṽj(x1) − ṽj(x2)| ≤ 2 maxj |x1
j − x2

j where the first inequality follows

by the triangle inequality. Thus bids are continuous in x with a modulus of continuity of 2.

For monotonicity, consider two types x1 and x2 with x1
k = x2

k for all k 6= j and x1
j < x2

j .

Now vk(x
2)− vk(x1) ≤ x2

j − x1
j for all k, since x1 can follow the strategy β(x2) and get the

exact same payoff as type x2 except when bidding on product j, when they get a payoff

at most x2
j − x1

j lower. Thus: βj(x
2) − βj(x

1) = x2
j − x1

j − r
∑

k Q̃j,k(vk(x
2) − vk(x

1)) ≥
x2
j −x1

j − r(x2
j −x1

j) > 0 proving that βj is strictly increasing in xj. Also vk(x
2)− vk(x1) ≥ 0

for all k since x2 can follow the the optimal strategy β(x1) and get at least as high a payoff. It

follows that βk(x
2)−βk(x1) = −r

∑
l Q̃k,l(vl(x

2)− vl(x1)) ≤ 0 which (together with analysis

of other cases) shows that βj is decreasing in xk for any k 6= j.

Lemma 6. For any strategy β, there exists a unique corresponding ergodic measure µβ,

converged to at geometric rate. This measure is absolutely continuous with respect to Lebesgue

measure except at the atoms ωj = (j,−1,−1, . . .− 1), j ∈ −1 ∪ 1 . . . J .

Proof. Let ω index states, Ω be the state-space, B(Ω) be the Borel σ-algebra over the state

space, and Pβ(ω,A) be the one-step transition probability when the players play according

to β (i.e. the probability of reaching set A ∈ B(Ω) from state ω in a single period). By

Theorem 11.12 in Stokey et al. (1989), uniform geometric convergence in total variation

norm will be achieved if their “condition M” holds: ∃ε > 0 such that for every A ∈ B(Ω),

either [Pβ(ω,A) > ε ∀ω ∈ Ω] or [Pβ(ω,Ac) > ε ∀ω ∈ Ω]. We claim the following is sufficient

for condition M: there exists some ω0 ∈ S and some ε > 0 such that Pβ(ω, ω0) > ε ∀ω ∈ Ω.

To prove this, notice that for any A ∈ B(Ω) either ω0 ∈ A or ω0 ∈ Ac. If the former, then

for any ω ∈ Ω, Pβ(ω,A) ≥ Pβ(ω, ω0) > ε. If the latter, then Pβ(ω,Ac) ≥ Pβ(ω, ω0) > ε.

Let ω0 be the state where there are no bidders and no supply (i.e. (−1,−1 · · ·−1)). This state

is reachable in a single step: if at the end of a period everyone exits and no-one enters, and

in the following period no products is available for auction, the state occurs. The probability
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of this occurring is at least (1− r)Nt−1−1︸ ︷︷ ︸
all losers exit

e−λ︸︷︷︸
no entry

min
j
Qj,J+1︸ ︷︷ ︸

no supply

. So the required condition holds

with ε = (1− r)Nt−1−1e−λ minj Qj,J+1.

Next, by the Lebesgue decomposition theorem, it will suffice to show that the singular part of

the ergodic measure µβ consists only of atoms at the points ωj. We assume that the singular

part is discrete, and argue by contradiction: suppose there are other atoms and let the

state ω̃ be a selection from the set of atoms with the property that there are no other atomic

states with more incumbent bidders. By the definition of ergodicity µβj (ω̃) = T (µβj , β)(ω̃) and

because ω̃ is an atom µβj (ω̃) > 0, so T (µβj , β)(ω̃) > 0. But for T (µβj , β)(ω̃) > 0 it is necessary

that there are other atoms that reach ω̃ in a single step with strictly positive probability.

Notice that no state with the same or fewer incumbent bidders than ω̃ reaches ω̃ with positive

probability, since at least one incumbent bidder must exit (the winner), and then reaching ω̃

requires drawing entrants with the exact same valuations as the exiting inbumbents. Since F

is atomless wrt Lebesgue measure, this is a zero probability event. By similar logic, no state

ω′ with more bidders reaches ω̃ with positive probability unless it includes all the incumbents

in ω̃ plus some additional incumbents (in this case there is a positive probability that these

additional incumbents exit and no one enters, reaching ω̃). But since by assumption ω̃ was

the atom with the largest number of incumbent bidders, any such state ω′ must have zero

measure under µβ. But then we have shown that T (µβj , β)(ω̃) = 0, a contradiction.

Proof of Theorem 1.

Proof. Lemma 6 directly above establishes the existence of a unique ergodic measure for any

strategy β. Thus to prove existence it will suffice to show that there is some strategy βe

that satisfies the optimality and consistency conditions laid out in Definition 1. Let C(X )

be the set of all continuous functions on X , metrized by the sup norm. Let LM = {f ∈
C(X ) : L(f) ≤ M} where L(f) is the Lipschitz constant of the function f , and M ≥ 2 is

finite. Define the best response function Γ(β) to any strategy β ∈ LM as in Lemma 1, i.e.

Γ(β)(x) = xj − r
∑

k vk(x). A fixed point β = Γ(β) is a pure strategy equilibrium. We will

prove the existence of a fixed point by Schauder’s fixed point theorem: if Γ is a continuous

mapping from a non-empty convex and compact subset K of a Banach space X into itself,

then it has a fixed point.

Convexity, Compactness, Containment. LM is non-empty and convex. Moreover,
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since LM has a finite Lipschitz constant, the set of functions f ∈ LM are uniformly equicon-

tinuous, and so by Arzelà-Ascoli, LM is relatively compact. Since LM is also complete it

is compact. It remains to prove that Γ(LM) ⊆ LM . Now, every β ∈ Γ(C(X )) admits a

modulus of continuity of 2, by the argument made in the proof of Lemma 1. This implies

Γ(LM) ⊆ L2 ⊆ LM for M ≥ 2.

Continuity. Next, we need to show that Γ is continuous in β when β ∈ LM i.e. if βn → β

then Γ(βn) → Γ(β). The first step is to show that the distribution of highest bids G1
j is

continuous in β in the weak-* topology i.e. βn → β implies µnj → µj in the sense of weak

convergence of measures (convergence in the weak topology is equivalent in this case). By

Lemma 7 directly below, the ergodic distribution of types is weakly continuous in β. Now

given an ergodic measure µβ the highest bid distribution G1
j is defined by:

G1
j(b) =

Pµβ (maxi>1 βj(ωi) ≤ b ∧ ω1 = j)

Pµβ (ω1 = j)

since the first entry ω1 indicates the product under auction and by definition the highest bid

is maxi>1 βj(ωi) (where we adopt the convention βj(−1) = −∞ ∀j i.e. non-existent bidders

don’t count towards the maximum). This is continuous in β since max is a continuous

operation, and by Lemma 6, µβ is absolutely continuous wrt Lebesgue measure in any states

where there are incumbent bidders in the market.

The second step is to show that if the highest bid distributions µ = {µj} are close in the

sense of weak convergence, then so are the best responses. Recall from the main text that

when playing optimally (i.e. best responding) the value of the game is just the value of

an infinite sequence of annuities, each of which pays EG1
j
[max{0, βj(x) − B1

j }] whenever j

is auctioned. The term inside the expectation is a continuous function, and so it follows

from the definition of weak convergence that the value function vj(x) is smooth in µ. Then

since the best responses Γ(β)(x) are by definition equal to value less discounted continuation

value, they too must be smooth in the bid distributions. Putting this all together, we get

the required continuity of Γ in β.

Uniqueness. We prove uniqueness in the case J = 1 by constructing a contraction mapping.

Let β and β′ be two equilibrium bidding strategies, necessarily monotone and continuous

by earlier results. By definition of equilibrium, Γ(β) = β and Γ(β′) = β′. Let v(x, β) and

v(x, β′) be the corresponding value functions (dropping the vector notation since there is a
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single product, and explicitly showing dependence on the strategies β). Γ is a contraction:

‖Γ(β)− Γ(β′)‖ = max
x

(x− rv(x, β))− (x− rv(x, β′))

< max
x
|G1

β (β(x))
(
x− Eβ[B1|B1 ≤ β(x)]

)
−G1

β′

(
β′j(x)

) (
x− Eβ′ [B1|B1 ≤ β′(x)]

)
|

≤ max
x

G1
β (β(x))

∣∣Eβ[B1|B1 ≤ β(x)]− Eβ′ [B1|B1 ≤ β′(x)]
∣∣

≤ ‖β − β′‖

where in the third line we use the fact that G1
β (β(x)) = G1

β′ (β
′(x)) for all x. This property

holds because under both strategies the same winner is chosen in each auction (types are

totally ordered), so that the distribution of highest bids is equal across strategies if evaluated

at the bids of a fixed type x in any state s. Therefore Γ is a contraction which guarantees

uniqueness of any fixed point (and a fixed point exists via the above application of Schauder’s

fixed point theorem.).

Lemma 7. Let β ∈ LM . The ergodic measure µβ is weakly continuous in β i.e. for all

sequences (βn) ∈ LM converging to β∗ ∈ LM we have : µβn(·) weakly−−−→ µβ∗(·).

Proof. Let (βn) be a sequence in LM that converges to β∗ ∈ LM . Towards a contradiction

suppose that (µβn) does not converge to µβ
∗
. Now since the state space Ω is compact, the

set of measures (µβ)β∈Ω are tight. Moreover LM is compact, and so by Prokhorov’s theorem

the set of measures (µβ)β∈LM is sequentially compact. Therefore we know that there is a

subsequence (βmn) and an element β′ ∈ LM such that

µβmn
weakly−−−−→ µβ′ .

Let d = N̄ + 1 and let A ∈ Rd be a Borel set. We define Pβ(ω,A) as the probability of

reaching the set A from the state ω in a single step when strategies β are played. Let ε > 0
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be a positive real. We have∣∣∣µβmn (A)−
∫
Rd
Pβ∗(ω,A)dµβmn (ω)

∣∣∣
(a)

≤
∣∣∣ ∫

Rd

[
Pβmn (ω,A)− Pβ∗(ω,A)

]
dµβmn (ω)

∣∣∣
(b)

≤ ε+ Pω∼µβmn (
∣∣[Pβn(ω,A)− Pβ∗(ω,A)

∣∣ > ε).

where to get (a) we used the fact that µβmn is the ergodic measure of Pβmn , and (b) splits

the realization of the state into small and large deviations.

Next, we will show that Pω∼µβmn (
∣∣[Pβmn (ω,A) − Pβ∗(ω,A)

∣∣ > ε) → 0 as βmn → β∗ (since

βn → β∗, the subsequence does too). It is sufficient to show that Pβ(ω,A) is continuous

in β almost everywhere. Notice that next period’s state depends only on the strategies β

through determining the winner of the current auction — entry, activity and exit through

losing are constant in β. Fix a state ω. Then the identity of the winner is continuous in

β at ω, unless there is a tie since then a small pertubation in β can affect the winner (and

therefore the next state) discontinuously. But the set of such states is of lower dimension

than the state space, and therefore Lebesgue measure zero, and (by absolute continuity of

the ergodic measures) zero probability. It follows that:∣∣∣µβmn (A)−
∫
Rd
Pβ∗(ω,A)dµβmn (ω)

∣∣∣→ 0. (2)

Again using the fact that all the ergodic measures are assumed to be absolutely continuous

with respect to the Lebesgue measure we have that: µβmn (A) → µβ′(A). Moreover as

ω → Pβ∗(ω,A) is measurable and bounded we know that for all δ > 0 there are Nδ different

Borel sets (Bi) and different reals ci such that

sup
ω

∣∣Pβ∗(ω,A)−
∑
i≤Nδ

ciI(ω ∈ Bi)
∣∣ ≤ δ

Moreover using the fact that µβmn (·) converges weakly to µβ′(·) we have:∫
Rd

[ ∑
i≤Nδ

ciI(ω ∈ Bi)
]
dµβmn (x)−

∫
Rd

[ ∑
i≤Nδ

ciI(ω ∈ Bi)
]
dµβ′(x)→ 0.
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Therefore by a triangle inequality we have:∫
Rd
Pβ∗(ω,A)dµβmn (ω)−

∫
Rd
Pβ∗(ω,A)dµβ′(ω)→ 0. (3)

Now since µβmn (A) weakly converges to µβ′(A), we can combine this fact with (2) and (3)

to deduce that for all Borel sets A we have

µβ′(A) =

∫
Rd
Pβ∗(ω,A)dµβ′(ω) (4)

But by Lemma 6 the ergodic measure is unique, so we must have that: µβ′ = µβ∗ . Contra-

diction.

Proof of Lemma 2.

Proof. Follows from the proof of Lemma 1, replacing j subscripts with functions of s.

Proof of Lemma 3.

Proof. See the argument in the text.

Proof of Lemma 4.

Proof. We begin by writing out an expression for the continuation value, prior to the real-
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izations of the transient shocks.

vj(x̌) =

∫ ∫
G1
j(b̌j + ξ + ε|ξ)

(
x̌j + ξ + ε− EG1

j |ξ[B
1
j |B1

j < b̌j + ξ + ε, ξ]
)
dFε(ε)dFξ(ξ)

+

∫ ∫
(1−G1

j(b̌j + ξ + ε|ξ))dFε(ε)dFξ(ξ)

(
r
∑
k

Q̃j,kvk(x̌)

)

=

∫ ∫
Ǧ1
j(b̌j + ε)

(
x̌j + ε− EǦ1

j
[B̌1

j |B̌1
j < b̌j + ε]

)
dFε(ε)dFξ(ξ)

+

∫ ∫
(1− Ǧ1

j(b̌j + ε))dFε(ε)dFξ(ξ)

(
r
∑
k

Q̃j,kvk(x̌)

)

=

∫
Ǧ1
j(b̌j + ε)

(
x̌j + ε− EǦ1

j
[B1

j |B1
j < b̌j + ε]

)
dFε(ε)

+

∫
(1− Ǧ1

j(b̌j + ε))dFε(ε)

(
r
∑
k

Q̃j,kvk(x̌)

)
(5)

The first line is the definition of the continuation value, as the probability of winning times

the surplus conditional on winning, plus the discounted continuation value when losing,

integrated out over the realizations of both shocks. In this expression the distribution of

competing bids conditions on the commonly known shock ξl, which affects the bids of all

bidders. The second line follows on noting that since ξl is common knowledge, all bidders

bidding on item l will increase their bids by exactly ξl relative to an auction where the item

shock is zero, and so we can work with the checked distributions instead. The final line

removes the redundant outer integral.

Now — in this case by definition — the bid types are equal to the valuation less the discounted

continuation value: b̌j = x̌j − r
∑

k Q̃j,kvk(x̌). Solving for x̌j in the above expression and
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substituting gives:

vj(x̌) =

∫
Ǧ1
j(b̌j + ε)

(
b̌j + r

∑
k

Q̃j,kvk(x̌) + ε− EǦ1
j
[B1

j |B1
j < b̌j + ε]

)
dFε(ε)

+

∫
(1− Ǧ1

j(b̌j + ε))dFε(ε)

(
r
∑
k

Q̃j,kvk(x̌)

)

=

∫
Ǧ1
j(b̌j + ε)

(
b̌j + ε− EǦ1

j
[B1

j |B1
j < b̌j + ε]

)
dFε(ε)

+

∫
(Ǧ1

j(b̌j + ε) + 1− Ǧ1
j(b̌j + ε))dFε(ε)

(
r
∑
k

Q̃j,kvk(x̌)

)
= uj(b̌) + r

∑
k

Q̃j,kvk(x̌)

(6)

where in the second line we collect terms in r
∑

k Q̃j,kvk(x̌), and in the final line we use the

fact that uj(·) is a function of the bid-type only. For each state j (including the no-supply

state) we have an equation of this form. Stacking the equations we get a system of equations:

v(x̌) = u(b̌) + rQ̃v(x̌)

where v(x̌) is J × 1, u(b̌) is J × 1, r is a scalar and Q̃ is J × J . Solving the system yields:

v(x̌) = (I − rQ̃)−1u(b̌)

where since r ∈ (0, 1) and Q̃ is right-stochastic, the matrix (I − rQ̃) is strictly dominant

diagonal and therefore invertible. Re-arranging the definition of the bid types, the underlying

valuation is given by x̌ = b̌ + rQ̃v(x̌). Substituting in for the continuation value:

x̌ ≡ ζ(b̌) = b̌ + rQ̃(I − rQ̃)−1u(b̌)

completing the proof.

Proof of Lemma 5.

Proof. We will repeatedly invoke (a minor modification of) Lemma 2 of Evdokimov and

White (2012): suppose the joint distribution of (Y1, Y2) is observed, Y1 = M + U1 and
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Y2 = M + U2 and (M,U1, U2) are mutually independent, with E[|Y1|+ |Y2|] <∞ and either

E[M ] = 0 or E[U1] = 0. Suppose also that there exist positive constants c1 and c2 such that

fU1(u) < c1 exp(−c2‖u‖). Then the distributions of M , U1 and U2 are identified.

Take as Y1 and Y2 the joint distribution of pairs of bids placed by bidders that have just

entered the market. From (10), these bids are a sum of two components: a component that is

common (ξl) and a component that is bidder-specific (x̌i,j − r
∑
kQ̃j,kvk(x̌i) + εi,t). Because

ξl, εi,l and xi are mutually independent, with finite second moments, the two components are

mutually independent with finite absolute first moments (the latter following from Cauchy-

Schwarz). Take U1 = x̌i,j − r
∑
kQ̃j,kvk(x̌i) + εi,t. It satisfies the thin tails condition, since

the valuations have finite support and by assumption εi,t satisfies the thin tails condition.

Finally, taking M = ξl we have E[M ] = 0. So the lemma’s conditions are satisfied and we

can identify Fξ.

Next, consider the joint distribution of pairs of bids of the same bidder in two successive

auctions of the same item. Again from (10), these are composed of a persistent bidder-

specific element, M = x̌i,j − r
∑
kQ̃j,kvk(x̌i) + ξl, and idiosyncratic shocks U1 = εi,t1 and

U2 = εi,t2 . Again all the conditions of the theorem are satisfied, with E[U1] = 0 this time,

allowing identification of Fε.

Finally, notice that B1
j,l,t = B̌1

j,t + ξl, where now the distribution of the LHS G1
j and the

distribution of Fξ are known, and B̌1
j,t and ξl are independent. Then since by assumption

the characteristic function of the distribution Fξ has isolated real zeros B̌1
j,t is thus identified

as per the remark in footnote 22. Finally, given that all these objects are identified, uj(b̌) is

identified according to (11).

Lemma 8. The function s(b̌) is identified.

Proof. We provide a procedure for iteratively computing the selection correction function,

providing a constructive proof of identification. Bidding on each of the products j = 1 . . . J

is a transitory state, as is bidding in a period with no supply. Exit is an absorbing state. The

probability of transition from any transitory state to another one is rj(b̌)Q̃j,k; the probability

of exit is (1− rj(b̌)). All of these are identified from knowledge of Q̃, Fε and {Ǧ1
j}. Define

for some subset A of the transient states 1 . . . J + 1, p(b̌, A, j) to be the probability that

bid type b̌ only visits states within A prior to exit, when entering in state j. We have the

Appendix-10



following recursive representation:

p(b̌, A, j) = 1(j ∈ A)

(
(1− rj(b̌)) + rj(b̌)

∑
k

Q̃j,kp(b̌, A, k)

)

since the probability of staying in A requires (i) starting in A (hence the indicator) and (ii)

either exiting or surviving and entering another state k and once again having the chance

of staying within A given by p(b̌, A, k). This recursive expression satisfies the Blackwell

conditions for a contraction, and so can be identified and quickly computed for any A.

Now the probability of visiting every state in a set A, denoted P (b̌, A, j), is equal to the

probability of staying within A less the probability of staying within any strict subset of A:

P (b̌, A, j) = p(b̌, A, j)−
∑
B⊂A

p(b̌, B, j)

Given this, we can compute P (b̌,J , j) for each j, and then sum over the steady-state

probability of entering in each of the states j to get s(b̌) =
∑J

j=1 πjP (b̌,J , j).

Proof of Theorem 2.

Proof. We supplement the argument from the main text with additional details. First, we

argue that the ergodic distribution G(b) is identified. We can rewrite it as follows:

G(b) = P(B ≤ b|B is complete) =
P(B ≤ b ∧B is complete)

P(B is complete)

= lim
T→∞

1
T

∑
t 1(Bt ≤ b ∧Bt is complete)

1
T

∑
t 1(Bt is complete)

where B is a random bid vector and Bt is sampled by selecting a bidder at random from each

cohort of entrants, and then tracking their bids until they exit the market. The first two

equalities in the display follow by definition and the definition of conditional probabilities.

The last equality follows from the pointwise ergodic theorem: the averages in the numerator

and the denominator tend asymptotically to the corresponding probabilities with respect to

the ergodic measure of market states ω defined in Lemma 6. By expanding it in this way we

can see the empirical objects required to estimate G(b): the probability that a randomly

selected bidder from a cohort has a complete bid vector less than b and the probability that
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a randomly selected bidder has a complete bid vector, both of which are observable.

Second, we work through the deconvolution argument. G is a convolution of F̃S and Fξ and

Fε, where the (selected) bid-type b̌ and ξ and ε are all mutually independent. Letting φX(·)
denoted the characteristic function of the random variable X, it follows that we have:

φb(t) = φb̌(t)φξ(t)φε(t)

Re-arranging yields:

φb̌(t) =
φb(t)

φξ(t)φε(t)

where the numerator and denominator are both known. Moreover by the assumptions of

Theorem 2 the denominator has only isolated real zeros so that the characteristic function

φb̌(t) is integrable with respect to Lebesgue measure. Integrating the characteristic function

of b̌ permits recovery of the distribution F̃S. Finally, the density of bid-types is f̃(b̌) =

kf̃S(b̌)/s(b̌) where k is the observable probability that a randomly chosen bidder submits a

complete bid. Finally, by Lemma 4 each bid-type can be inverted to recover the underlying

valuation, and we have:

FX(x) = PF̃({b̌ : ζ(b̌) ≤ x})

Proof of Corollary 1.

Proof. From (15) the permanent part of the each bidder’s valuation is x = αW where α is

sampled from Fα. Now since W has full rank, we can write α = W+x where W+ is the

Moore-Penrose pseudo-inverse of W . So the mapping is invertible: i.e. each α maps to a

unique x. It follows that the densities of Fα and F are related: fα(α) = fx(Wα). Now from

Theorem 2 the distribution F is identified, so we are done.
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B Empirical Appendix (not for publication)

B.1 Data Source

We used data from eBay auctions for compact cameras that was purchased from Terapeak,

a private company that uses eBay data to offer analytics tools for sellers on the platform.

Our data included item, seller, and bidder attributes as documented in Table B-1 from the

main text.

B.2 Sample Construction

We restricted attention to auctions for new compact cameras that ended between the dates

of Feb 5 and May 6, 2007. By way of data cleaning we also imposed the following restrictions:

1. We were somewhat concerned that we may have been observing some “shill” bidding

by sellers intent on raising revenues. We used the following rather coarse procedure to

detect such bidding behavior: for any given bidder, if they won at least five auctions

and at 80% of them were from the same seller, then we flagged them as a shill bidder.

We excluded all auctions in which a so-designated shill bidder was among the set of

observed bidders.

2. There are many senses in which a bid may be an “outlier”. We excluded all winning

bids that were more than twice the sale price of the listing (either the second-highest

bid or the reserve price, whichever is greater).

3. Though we did not exclude auctions that used the Auction-Buy-it-Now feature, we

did exclude auctions that ended with the execution of the BIN option. This option

disappears once the first bid is made, so those listings function as regular auctions

afterwards. See Ackerberg et al. (2009) for a fuller treatment of Auction-Buy-it-Now

auctions.

4. We drop listings for which we are missing data on attributes (e.g., zoom, resolution),

for which those attributes are unreasonable or technically impossible, or where the

product line is not indicated.
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B.3 Descriptive evidence

Our sample construction leaves us with a dataset of 19160 auctions, 4387 sellers and 74375

unique bidders. Summary statistics are presented in Table B-1. In the top panel, we sum-

marize the data at an auction level (i.e. an observation is an auction). The average gap

between the winning bid and the closing price is $10.60. In a static auctions framework

auctions this would be a direct estimate of the average consumer surplus of winning bidders,

but we will show that it is a substantial underestimate once continuation value is taken into

account. The probability of sale is quite high, at 0.95. Those products that do not sell tend

to be among the small handful which employ “secret reserve prices”, whereby the item only

sells if the highest bid meets a reserve price set by the seller but hidden from bidders. On

average an auction attracts 7 – 8 unique bidders and 16 – 17 bids, though there is substantial

variance.

Table B-1 also summarizes the data at the seller and bidder level. There are just over four

listings for every seller in our marketplace. The distribution of seller shares is skewed, with

large, experienced sellers making up the bulk of listings. However there are many such large

sellers and the seller concentration measure (HHI) remains low at 0.04. On the bidder side

we find some motivation for the assumptions of our model. Most bidders are unsuccessful in

acquiring an item (the purchase rate is 24.3%), but they are active in the market for nearly a

week and on average are observed bidding in two different auctions, with some participating

in many more than that.39 This repeated participation is not driven by multi-unit demand—

99% of our bidders make one or fewer compact camera purchases.

Having introduced the data, we now offer some descriptive evidence that indicates our model

is a reasonable approximation to the behavior we see in the market.

Do bidders substitute across products? If bidders generally bid on the same products

repeatedly (or have identical preferences over product characteristics), one might think that

the single-good models familiar from the existing empirical auctions literature may suffice.

So to get some evidence on this, we look for evidence of substitution across products. There

are many distinct products sold in our dataset, but in the demand system below we allow

random coefficients over camera resolution, and so this is the relevant definition of a product

for the purposes of our analysis. We therefore calculate a transition matrix across cameras

39We say a bidder is “active” from the start of the first auction they bid in to the end of the last auction.
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Table B-1: Summary Statistics: Online Auctions of Compact Cameras

Mean Std. Dev. Min Max

Auction-Level Data

Winning bid 228.2 99.58 24.51 2346.0
Closing price 219.3 90.72 20.26 2025
Shipping cost 18.45 9.116 0 150
Starting price 51.27 86.88 0.01000 564.0
Secret reserve? 0.0475 0.213 0 1
Item sold? 1 0 1 1
Bid count 16.71 9.931 1 95
Number of unique bidders 7.808 4.005 1 34
Camera resolution (megapixels) 6.710 1.206 5 10
Optical zoom 4.872 2.959 2 15
Digital zoom 4.246 1.225 2 10
Comes with accessories 0.527 0.499 0 1
Number of auctions 9213

Seller-Level Data

Number of listings 4.086 54.05 1 2188
Number of sales 3.839 51.57 0 2101
Seller feedback 801.6 7590.6 -1 251949.1
Number of sellers 2255
Seller HHI 0.0804

Bidder-Level Data

Auctions participated in 1.848 2.860 1 136
Incumbent period (days) 2.423 5.056 -0.000744 69.68
Time between bids (days) 4.041 9.466 0 91.06
Number of purchases 0.222 0.416 0 1
≤ 1 purchase 1 0 1 1
Bidder feedback 85.99 444.3 -999 60013
Winning bidder’s age 36.43 16.25 1.742 95.98
Number of bidders 38919
Buyer HHI 0.000116

Notes: Summary statistics for the full dataset, which consists of all auctions of compact cameras auctions
on a large online platform that ended during the period Feb 5 – May 6, 2007. Observations with missing
product characteristics have been dropped. The “incumbent period” for a buyer is measured as the time
from the start-date of the first auction bid in to the end of the last auction bid in. “Time between bids” is
the gap between the first and second bids by a buyer on different objects, measured only for the subsample
of bidders with multiple bids. “Seller HHI” is the Herfidahl–Hirschman index for sellers, based on their share
of items sold. “Buyer HHI” is the analogous measure for buyers, based on the share of items bought.
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of different resolution, shown in Table B-2. Each entry in the matrix is the probability

(expressed as a percentage) that a bidder who bids on a camera of the resolution in a given

row subsequently bids on a camera with the column resolution. We find that most buyers

that bid on multiple cameras tend to bid on a product with the same resolution next, but

the probability of this is far away from 100%, ranging from 64.8% to 80.8%. When they

substitute, they tend to pick a product of similar resolution (the biggest off-diagonal elements

are generally close to the diagonal).

Table B-2: Substitution Patterns for Repeat Bidders

5MP 6MP 7MP 8MP 10MP

5MP 64.8 17.3 12.3 4.2 1.4
6MP 5.9 75.3 13.7 3.5 1.7
7MP 2.9 8.8 80.8 5.2 2.4
8MP 2.6 5.4 10.2 78.3 3.6
10MP 1.9 6.1 13.0 8.0 71.0

Notes: Each entry in the matrix gives the observed frequency with which a bidder who is observed bidding
on the row product is next observed bidding on the column product.

Do sellers use reserve prices? In our empirical model, there are no reserve prices,

although they are straightforward to implement in counterfactuals. In reality, there are two

ways that sellers might implement a reserve price. The first is eBay’s “secret reserve” feature.

If a seller elects to use this option, the reserve price is shrouded and bidders are notified only

of whether the standing high bid has exceeded the secret reserve or not. The pricing of this

feature is relatively aggressive, which is reflected in the fact that it is rarely used. In our

sample, less than five percent of sellers opt to employ a secret reserve price.

An alternative strategy to set a reserve price would be to set a high starting price. This

does not incur additional fees. In practice, however, the vast majority of sellers do not do

this. Figure B-2 depicts a kernel density estimate of the distribution of starting prices in our

dataset; it is clear that, by and large, sellers do not employ anything approximating optimal

reserves. This is demonstrably suboptimal, but perhaps not surprising: it is difficult to work

out and motivate the use of optimal reserves even for professional sellers and advertising

auction platforms, and so eBay sellers may prefer a simpler strategy. Moreover, the platform

explicitly encourages to use low starting prices.

Appendix-16



1
0

0
2

0
0

3
0

0
4

0
0

M
e

d
ia

n
 P

ri
c
e

 (
in

c
l.
 s

h
ip

p
in

g
)

Feb 01 Mar 01 Apr 01 May 01
Auction closing date

5MP 6MP

7 MP 8 MP

10 MP

15
0

20
0

25
0

30
0

C
lo

si
ng

 P
ric

e

Feb 01 Mar 01 Apr 01 May 01
Auction closing date

Closing price Bidder valuation
Optimal bid Expected payment

Figure B-1: Market Dynamics. The left panel shows the median daily price (including shipping) over
the sample period, separately by camera resolution (4MP cameras omitted for clarity). The right panel
shows the closing transaction prices on auctions of a Kodak Easyshare Z710 from a single seller over the
sample period, superimposing over this the valuation, optimal bid and expected payment of a bidder with
$250 valuation (see text for more details).

Do bidders have option value? Another focus of our approach has been to emphasize

dynamic bidding and option values. Option values arise from price fluctuations—a bid that

loses today may win tomorrow. Many economists have the intuition that in large markets the

law of one price holds, and so price fluctuations should be minimal. This is not true here. The

top left panel of Figure B-1 shows the median daily transaction prices (including shipping)

on different models of cameras over the sample period. There is quite a lot of variability—a

typical change is 10%—and since it is a median price, this is not driven entirely by outliers.

To rule out variation based on compositional effects, we drilled down to look at the highest

volume seller’s most popular product (a Kodak Easyshare Z710), and plotted the price series

against time (fluctuations could be within a day), shown in the top right panel of Figure B-1.

Prices vary from below $200 to over $250 dollars. Doing some rough back of the envelope

calculations based on the observed price distribution, a bidder with a valuation of $250 (red

dashed line), bidding once a day, with a daily exit hazard rate of 0.5, should optimally shade

their bid down to $238 (green dashed line), because of the option value (and should expect

to pay closer to $225, orange dashed line). Indeed this option value should be present in

many online markets: Einav et al. (2015) have found the standard deviation in price to be

on the order of 10% of the transaction price in most eBay categories.

We also observe that the average time between bids is just over four days, with many auctions
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Figure B-2: Density of
bi,j1−bi,j2

resi,j1−resi,j2
. This figure presents a kernel density plot of the ratio between

the difference in bids across cameras of two resolution levels and the difference in resolution levels, across
bidders.

closing in the meantime. This suggests that bidders are inattentive (i.e. τ close to zero). In

view of this, Assumption 1 seems quite reasonable: information from the current auction is

probably a poor predictor of what conditions will be like the next time the bidder bids.

Is there unobserved product heterogeneity? The way we specify valuations below

incorporates random coefficients over camera resolution, as well as common preferences for

observable camera attributes (e.g. brand) and an unobservable component. To motivate the

inclusion of this unobserved product heterogeneity, we perform a simple heuristic estimation

exercise. We take bids that have been “normalized” to account for observable heterogeneity

(we explain this process below), and look at bidders who have bid exactly twice on cameras

at two different resolution levels (e.g. 7MP and 8MP cameras). Dividing the difference in

their normalized bids by the difference in the camera resolutions gives us a crude estimate

of this bidder’s willingness to pay for megapixels, and the distribution of differences across

such bidders gives us an idea of the diversity in bidders’ willingness to pay.

Figure B-2 presents the density of that statistic computed at the bidder level for this re-

stricted subset, without any kind of selection correction. While the mean of this distribution
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is positive (reassuringly) and the variance is large (motivating heterogeneous preferences for

resolution), there is a troublesome and substantial mass to the left of zero. It is implausible

that many consumers have negative marginal utility from higher resolution cameras, and

we instead interpret this as evidence of unobserved product heterogeneity in our data that

confounds this simple approach (we will offer more direct evidence below).

B.4 Alternative Empirical Designs

Our application was chosen to highlight the flexibility of the identification and estimation

framework, but of course there are a number of alternative empirical designs that we could

have employed consistent with that framework, designs which may be more or less appro-

priate given the aims of the estimation exercise. Here we discuss a few of them.

Aggregate Fluctuations. We found no evidence of aggregate fluctuations in supply or

demand in our sample (see Figure B-1 and the corresponding discussion), but how costly

would it be to allow for changes in market aggregates? Following the theory offered in

Lemma 2, our model can accommodate these fluctuations by augmenting the state space

of the model with “public states,” which can evolve stochastically or deterministically. The

cost of doing so turns out not to be imposed on the bidder-wise inversion or the dimension

of the state-space—requirements for bidder-wise inversion depend only on the dimension of

the type space. Instead, the practical constraint is that the econometrician must estimate

G(1) and G(2) for every point in the augmented state space.

It is worth noting that the same procedure could be adopted to allow for other natural

extensions in the eBay environment. For instance, variation in supply might translate to

variation in how many close substitutes are available in the upcoming sequence of auctions,

which would affect shading in a model with limited bidder foresight and patience (see our

prior working paper, Backus and Lewis (2010), for a full treatment of this scenario).

Alternative Type Spaces. A costlier extension would be to allow bidders to have random

preferences for each product type or brand. Analogous to the fixed-price demand literature,

we have employed characteristic space (in this case, resolution) as dimension reduction.

The richness of dimension that one can accommodate in the type space should be dictated,

following the intuition of our identification result, by the frequency with which one observes
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bidders in multiple states. We find a substantial population of bidders who bid on at least

two different cameras with two different resolution values, and so we set the dimension to two

and identify demand using that population. It is natural to ask, however, whether there is

a way that we could have used the entire sample of bidders. Indeed we could have: since we

have formally modeled sample selection, our model does produce moments that we can match

about the distribution of partially observed bid vectors. We eschewed these in the exercise

in order to stay closer to the nonparametric identification strategy. Alternatively, we could

have specified a one-dimensional type space and performed the bidder-wise inversion for the

entire sample. These are practical choices that will depend on the aim of the exercise—our

aim is to illustrate and highlight the choices.

B.5 First-Stage Estimation

Estimation of supply and exit rates. Estimation begins with the recovery of the sur-

vival rate r, and the multinomial supply π. Note that with multinomial supply, the activity

rate τ plays no role in optimal bidding and is therefore unnecessary for identification of

demand. To see this, recall Lemma 1 and that Q̃ ≡
∑∞

s=1 τ(1 − τ)s−1Qs. So, if the state

tomorrow is independent of the state today, then Q̃ = Q and each row is simply π, which is

also the stationary distribution. In contrast, with general Markov supply transitions Q, the

activity rate drives a wedge between supply transitions and the state transitions Q̃ in the

short run, although for τ small, each row of Q̃ would converge to the stationary distribution.

Survival Rate of Bidders (r): We estimate this parameter using a censored negative

binomial model fit to the likelihood of bidder exit using the full sample of bids. A

bidder exits if they do not return to bid again. However we treat this outcome as

censored if the last bid event was in the final six weeks of our dataset.40

Supply (π): π̂ is the observed market share of each of the six resolution types.

Bid normalization. Cameras differ in both observable and unobservable features. The

first step in working with the bids is to normalize out the contribution of observables for

40We maintain the assumption of exogenous exit on the part of bidders. While it might seem somewhat
unrealistic, we found no evidence in reduced–form regressions of a systematic correlation between exit of
losing bidders and the level of their bid. However, the assumption could be weakened: see prior versions of
this paper, in which we described an extension of our identification results to random outside options.
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which bidders have common preferences (Haile et al., 2006). Applying our earlier theory to

the valuations in (16), the bidding equation takes the form:

bi,j,t = max{0, αi,c + resjαi,r + Zj,tγ + ξj,t − v(αi,c, αi,r)} (7)

i.e. valuation less continuation value. Restricting attention to positive bids, and adding and

subtracting ψj ≡ EFα [αi,c + resjαi,r − v(αi,c, αi,r)], we get an estimating equation in reduced

form:

bi,j,t = ψj + Zj,tγ + ei,j,t

where the error term ei,j,t combines an individual-specific deviation in bid from that of the

average type and the common unobserved heterogeneity. Since these are both independent

of Zj,t), we can estimate γ consistently by OLS with product fixed effects. However, since

the error here includes bidder resolution types, we use FGLS, allowing for a correlation with

camera resolution.

We only run this regression on a subsample of our data, consisting of the two highest bids

in every auction. This is motivated by the behavioral intuition of Haile and Tamer (2003).

Because eBay’s proxy bidding system is formally an ascending auction, the bid of the third,

fourth, or n-th highest bidder may not reflect their intended final bid (what they would

have bid in a sealed-bid auction i.e. valuation less continuation value). It is common for

bidders to “test out” a sequence of ascending bids to see if they can become the standing

high bidder, but if in this process the price comes to exceed their intended final bid then it

will be censored from the dataset. For this reason we restrict attention to the two highest

bids in each auction, who are never censored in this way.

As controls Zj,t we include product line fixed effects, listing attributes including shipping

options, seller feedback, and optional listing features (e.g., sellers may pay a fee for their

results to be highlighted in search results), as well as a set of dummies for resolution, optical

zoom, and digital zoom levels.41 We report results for the main controls of interest in Table

B-3. They are generally sensible, with bids increasing in seller feedback and higher when

there is free shipping, consistent with the findings of Einav et al. (2015). Curiously, they are

also slightly increasing in shipping costs (where applicable); we believe that this is an quirk

of the fact that at the time, shipping costs were not counted towards the final value fee, and

41Note that we include resolution dummies to avoid omitted variable bias, however we exclude these
coefficients when predicting the normalized bids below.
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Table B-3: First-Stage Normalization Regression

(1)
Winning bid

Free shipping 16.65∗∗∗

(2.119)

Shipping cost 0.367∗∗∗

(0.0496)

Seller feedback (thousands) 0.0447∗∗∗

(0.00876)
R2 0.747
N 16484

Notes: This table presents selected coefficients from the first-stage normalization regression. Unreported here,
the regression also includes dummies for all (rounded) resolution, optical zoom, and digital zoom values, as
well as product-level fixed effects. It also includes a large array of listing attributes such as featured listing
status, whether the seller paid for a scheduled end-time, and dummies for bundled accessories. Note that the
coefficients on the resolution dummies are set to zero before predicting the normalized bids for subsequent
analysis. Standard errors in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001.

so sellers has an incentive to shift some of the price to shipping costs.

Define the normalized bids b̃i,j,t = bi,j,t−Zj,tγ = αi,c+resjαi,r−v(αi,c, αi,r)+ξj,t. We will work

with our estimate of these bids bi,j,t−Zj,tγ̂ in what follows. Consider the difference between

two normalized bids on the same product, by the same bidder in two different auctions.

These should differ only by ξj,t1 − ξj,t2 , and since these random variables are independent of

each other, we can estimate the variance of ξj,t as σ2
ξ,j = V ar(bi,j,t− bi,j,t′)/2 where the RHS

variance is estimated by pooling over all t < t′ pairs available.42

Opposing bids. Here, we estimate {Ǧ1
j} and {Ǧ2

j}, the distributions of the highest two

competing bids net of unobserved heterogeneity (ξj,t). We observe the raw distributions

of the first and second highest normalized bids {G1
j , G

2
j} (i.e. the convolution of b̌i,j and

ξj,t). Based on the shape of these, we assume a Gamma distribution for {Ǧ1
j , Ǧ

2
j} with

separate shape and scale parameters for each product and order statistic. We estimate these

42As an additional check, we measured the heterogeneity of bids by the same bidder on auctions with
the same title, and found it to be substantially smaller, with a standard deviation of 4.68. This suggests
that most of the within-bidder, within-resolution variation is driven by unobserved heterogeneity rather than
learning, deadlines, or market fluctuations.
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parameters by method of moments (i.e. we pick these parameters to match the mean and

variance of the distribution of the normalized highest bid, taking our estimates of σ2
ξ,j in the

earlier step as given).

We summarize the results of all these preliminary estimation steps in Table B-4. We find

that bidders are reasonably likely to return and bid again upon a loss (r = 0.38). The

modal camera is in the middle of the range of resolution types (7MP with 39.71 percent

of auctions), while 5MP and 10MP cameras are somewhat underrepresented (12.3 percent

and 7 percent, respectively). Finally, unobserved heterogeneity varies substantially with

resolution type and is particularly important for 10MP cameras, where we anticipate there

is more differentiation of high-end products.

B.6 Estimating Bid Functions and Selection Probabilities

We start with the optimal bid function. Fix a type α and an associated J-vector of valuations

x. We solve for their optimal bids and associated continuation value by value iteration: given

a (scalar) continuation value v(x), define the following mapping from R+ into itself:

Tx(v) =
π · (G1(x− v)(x− EG1 [B1|B1 ≤ x− v]))

1− r ((1−G1(x− v)) · π)

where · denotes dot product, and G1 and EG1 are now J-vectors. The continuation value

for type x(α) satisfies Tx(v) = v, and from this we obtain the bidding function β(α) =

max{0,x(α)− v(α)}.

Next, given a bid b associated with the type α, we work out the probability that a particular

bidder is observed in a subset B ⊆ J of the set of possible auctions. The building block

for this is the function P(A,b), defined as the probability that a bidder with bid vector

b, entering in a randomly sampled period, exits before they are “observed” in any auction

outside of the set A ⊆ J . Define P(A,b, j) in the same way, but additionally conditioning

on the bidder entering in state j, so that P(A,b) =
∑

j πjP(A,b, j). Recalling that we treat

bidders as “observed” only when they make bids that qualify for our estimation sample (i.e.

one of the top two bids in the auction), we can write the latter probability recursively as:

P(A,b, j) = 1(j ∈ A)
(
G1
j(bj) + (1−G1

j(bj))(1− r + rP(A,b))
)

+ 1(j 6∈ A)
(
(1−G2

j(b))((1− r) + rP(A,b))
)
.

(8)
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Table B-4: First-Stage Parameters

r 0.3806
( 0.0055)

π 5mp 6mp 7mp 8mp 10mp
0.1232 0.3326 0.3971 0.0766 0.0704

( 0.0034) ( 0.0049) ( 0.0051) ( 0.0028) ( 0.0027)

σξ 5mp 6mp 7mp 8mp 10mp
19.0497 12.5239 12.5960 8.6771 20.4836

( 0.1715) ( 0.0704) ( 0.0552) ( 0.1622) ( 0.1715)

G(1) 5mp 6mp 7mp 8mp 10mp
k 23.1098 36.8410 27.6030 34.9949 79.5150

( 1.4572) ( 1.3320) ( 0.7670) ( 1.7766) ( 6.8781)

θ 6.6671 5.6896 8.4362 7.4766 4.2940
( 0.4277) ( 0.2088) ( 0.2438) ( 0.3845) ( 0.3841)

G(2) 5mp 6mp 7mp 8mp 10mp
k 21.6889 37.9918 27.6053 31.2232 107.5733

( 1.4823) ( 1.5179) ( 0.8154) ( 1.5900) ( 11.6799)

θ 6.6180 5.2130 8.0352 7.8953 3.0116
( 0.4539) ( 0.2103) ( 0.2468) ( 0.4072) ( 0.3348)

Notes: This table presents estimates of the first-stage parameters of the model. See text for estimation
details. Standard errors are presented in parentheses.

On the first line of the RHS we consider the case where j ∈ A: that bidder will be observed

only in A if they exit immediately (either by winning or exogenously exiting), or survive and

then transition to a new random state, in which case the chance is P(A,b). The second line
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is for the case where j 6∈ A, and then the bidder must not be observed in j, so they must

make a bid below the second highest. Given that this is the case, again they must either

exit immediately or survive and we get P(A,b) again.43

Now G1
j and G2

j are known, and P(A,b) is a weighted sum of the P(A,b, j), so for any (A, b)
we can get P(A,b) as the solution to a linear system with unknowns {P(A,b, j)}j∈J . Then

we can use these objects to compute the probability that a bidder is observed in exactly the

set B. For instance, if we are interested in the probability that a bidder of type α is observed

in a subset B = {2, 4} we can compute P({2, 4}|β(α)} = P({2, 4}, β(α)) − P({2}, β(α)) −
P({4}, β(α)) + P({φ}|β(α)).

B.7 Optimization

We now proceed to the problem of optimizing the likelihood. Usually one would proceed by

applying some optimization routine in an outer loop to the likelihood (17), evaluating it by

Monte Carlo integration, holding the randomness in the draws of α fixed across evaluations

k (Pakes and Pollard, 1989). But this is computationally costly, as for many different α

draws we will have to evaluate the bidding and selection functions.

Notice that the parameter vector θ enters the likelihood (17) only through the distribution

of random coefficients F (α|θ). This allows us to employ an alternative approach based on

re-weighting (Ackerberg, 2009). Fixing α, define

hi(α) ≡ P{Bi|b(α)}
P{|P{Bi| = 2|b(α)}

(∏
j∈Bi

φ

(
bi − bj(α)

σξ,j

))
|β′(α)|, (9)

and note that this object is computable for any α from the results of the first-stage estimation.

Therefore, taking as our objective function the log-likelihood of the dataset, we can write

L(θ, {bi}) =
∑
i

log

∫
hi(α)dF (α|θ). (10)

One natural and computationally efficient way to proceed would then be to sample α uni-

formly from the type space S times (for S the number of draws in the Monte Carlo inte-

gration), and then optimize the simulated criterion function by re-weighting their likelihood

43This calculation assumes that the true state space coincides with the one that bidders use in forming
beliefs. This is not necessary (we could condition on history), but is practical given our data constraints.
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contribution according to f(α|θ). Instead, we choose to use importance sampling, i.e. sam-

pling from and re-weighting relative to a user-chosen distribution, denoted G(α). We do this

for two reasons: first, for efficiency—we would like to sample more points from the center of

the true distribution if possible, since this is where the gradient of the likelihood is sharpest.

Second, we would like the sampled distribution to have unbounded support, mirroring our

parametric assumption on F (α|θ).

Let the set of points be drawn from G(α); then we have:

θ̂ = arg max
θ

L(θ, {bi}) =
∑
i

log
S∑
s=1

hi(α)
f(αs|θ)
g(αs)

. (11)

We implemented the estimator in two steps: first, we choose G1 to be a normal with very

large variance, and obtained a first estimate θ̃. In a second step, we drew from a distribution

G2(α) = F (α|θ̃) and re-optimized. This two-step procedure should improve the efficiency

of our estimator, as the second sample should be more centered and thus provide a better

approximation to the integral.

B.8 Consumer Surplus

Even without estimating the full demand system, at this point we can already say something

useful about consumer surplus. In the static model consumers bid their valuations whereas

in our dynamic setting we have shown that they shade their bids substantially. This shading

will bias static estimates of consumer surplus.44

In the static framework where bj = xj, the difference between the highest bid and the

second-highest bid is a direct measure of surplus per auction. So for a psuedotype b entering

a random auction according to π,

E[CSstatic(b)] =
∑
j

πj{G1
j(bj)[bj − E[B(1)|b(1) < bj]]}

To compute this object we take total surplus to be the total sum of {B(1) − B(2)}i, i.e. the

valuation of the first-highest bidder minus the price paid, across all auctions, and then divide

44Coey et al. (2015) also make a point of computing consumer surplus in a dynamic framework, although
theirs is based on valuations with “deadlines.”
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by the total number of bidders. From Table B-1 the average difference between the first–

and second–highest bid in our dataset is $8.90, which yields an expected consumer surplus

of ($8.90 × (9,213 auctions ÷ 38,919 bidders) = ) $2.11 per bidder in our dataset.

In the dynamic model, however, bidders shade their bids: bj = xj − r
∑

k Q̃j,kvk(b). Note

moreover that, if we take bidders’ beliefs to be correct, v(b) = E[CSdynamic(b)].45 In this

setting,

E[CSdynamic(b)] =
∑
j

πj{G1
j(bj)[xj − E[B(1)|b(1) < bj]] + (1−G1

j(bj))r
∑
k

Q̃j,kvk(b)}

=
∑
j

πj{G1
j(bj)[bj − E[B(1)|b(1) < bj]]}︸ ︷︷ ︸

=E[CSstatic(b)]

+
∑
j

πjr
∑
k

Q̃j,kvk(b)︸ ︷︷ ︸
=rE[CSdynamic(b)]

=
1

1− r
E[CSstatic(b)].

Note that in the second equality, we take advantage of the fact that π is the ergodic distri-

bution of Q, and therefore Q̃π = π for any τ .

This computation yields a substantially larger estimate of consumer surplus per bidder:

((0.3806)−1 × $2.73 = ) $5.54 ($23.38 per auction). This large correction reflects the fact

that the bidders who are most likely to win also shade the most, and therefore it is for these

that the static model most underestimates valuations.

45This relies on an assumption that τ is sufficiently small that each time a bidder participates, sufficient
time has passed that the market is once again in steady-state i.e. v(b) can be calculated without sophisticated
conditioning on histories. We could be more mathematically precise—as we were in the earlier selection
correction argument—but as we argued when discussing Table B-1, τ appears to be small.
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